Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A belt of moonlets in Saturn’s A ring

Abstract

The origin and evolution of planetary rings is one of the prominent unsolved problems of planetary sciences, with direct implications for planet-forming processes in pre-planetary disks1. The recent detection of four propeller-shaped features in Saturn’s A ring2 proved the presence of large boulder-sized moonlets in the rings3,4,5. Their existence favours ring creation in a catastrophic disruption of an icy satellite rather than a co-genetic origin with Saturn, because bodies of this size are unlikely to have accreted inside the rings. Here we report the detection of eight new propeller features in an image sequence that covers the complete A ring, indicating embedded moonlets with radii between 30 m and 70 m. We show that the moonlets found are concentrated in a narrow 3,000-km-wide annulus 130,000 km from Saturn. Compared to the main population of ring particles6,7,8 (radius s < 10 m), such embedded moonlets have a short lifetime9 with respect to meteoroid impacts. Therefore, they are probably the remnants of a shattered ring-moon of Pan size or larger2, locally contributing new material to the older ring. This supports the theory of catastrophic ring creation in a collisional cascade9,10,11,12.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four new propellers in Saturn’s A ring seen by Cassini.
Figure 2: Close-up view and re-projection of two propeller structures.
Figure 3: Nearly linear spatial scaling of the features points to moonlet wakes.
Figure 4: Cumulative size distribution of particles in the moonlet belt region.

Similar content being viewed by others

References

  1. Burns, J. A. & Cuzzi, J. N. Our local astrophysical laboratory. Science 312, 1753–1755 (2006)

    Article  CAS  Google Scholar 

  2. Tiscareno, M. S. et al. 100-metre-diameter moonlets in Saturn’s A ring from observations of propeller structures. Nature 440, 648–650 (2006)

    Article  CAS  ADS  Google Scholar 

  3. Julian, W. H. & Toomre, A. Non-axisymmetric responses of differentially rotating disks of stars. Astrophys. J. 146, 810–830 (1966)

    Article  ADS  Google Scholar 

  4. Spahn, F. & Sremčević, M. Density patterns induced by small moonlets in Saturn’s rings? Astron. Astrophys. 358, 368–372 (2000)

    ADS  Google Scholar 

  5. Sremčević, M., Spahn, F. & Duschl, W. J. Density structures in perturbed thin cold discs. Mon. Not. R. Astron. Soc. 337, 1139–1152 (2002)

    Article  ADS  Google Scholar 

  6. Marouf, E. A., Tyler, G. L., Zebker, H. A., Simpson, R. A. & Eshleman, V. R. Particle size distributions in Saturn’s rings from Voyager 1 radio occultation. Icarus 54, 189–211 (1983)

    Article  ADS  Google Scholar 

  7. Zebker, H. A., Marouf, E. A. & Tyler, G. L. Saturn’s rings — particle size distributions for thin layer model. Icarus 64, 531–548 (1985)

    Article  ADS  Google Scholar 

  8. Nicholson, P. et al. Saturns rings I: optical depth profiles from the 28 sgr occultation. Icarus 145, 474–501 (2000)

    Article  ADS  Google Scholar 

  9. Colwell, J. E., Esposito, L. W. & Bundy, D. Fragmentation rates of small satellites in the outer solar system. J. Geophys. Res. 105, 17589–17600 (2000)

    Article  ADS  Google Scholar 

  10. Esposito, L. W. & Colwell, J. E. Creation of the Uranus rings and dust bands. Nature 339, 605–607 (1989)

    Article  ADS  Google Scholar 

  11. Colwell, J. E. & Esposito, L. W. Origins of the rings of Uranus and Neptune. I. Statistics of satellite disruptions. J. Geophys. Res. 97, 10227–10241 (1992)

    Article  ADS  Google Scholar 

  12. Esposito, L. W. et al. Ultraviolet imaging spectroscopy shows an active saturnian system. Science 307, 1251–1255 (2005)

    Article  CAS  ADS  Google Scholar 

  13. Porco, C. C. et al. Cassini imaging science: initial results on Saturn’s rings and small satellites. Science 307, 1226–1236 (2005)

    Article  CAS  ADS  Google Scholar 

  14. Dones, L., Cuzzi, J. N. & Showalter, M. R. Voyager photometry of Saturn’s A ring. Icarus 105, 184–215 (1993)

    Article  ADS  Google Scholar 

  15. Colwell, J. E., Esposito, L. W. & Sremčević, M. Self-gravity wakes in Saturn’s A ring measured by stellar occultations from Cassini. Geophys. Res. Lett. 33, 7201–7204 (2006)

    Article  ADS  Google Scholar 

  16. Hedman, M. M. et al. Self-gravity wake structures in Saturn’s A ring revealed by Cassini VIMS. Astron. J. 133, 2624–2629 (2007)

    Article  ADS  Google Scholar 

  17. Salo, H., Karjalainen, R. & French, R. G. Photometric modeling of Saturn’s rings. II. Azimuthal asymmetry in reflected and transmitted light. Icarus 170, 70–90 (2004)

    Article  ADS  Google Scholar 

  18. Weidenschilling, S. J., Chapman, C. R., Davis, D. R. & Greenberg, R. in Planetary Rings (eds Greenberg, R. & Brahic, A.) 367–415 (Univ. Arizona Press, Tucson, 1984)

    Google Scholar 

  19. Albers, N. & Spahn, F. The influence of particle adhesion on the stability of agglomerates in Saturn’s rings. Icarus 181, 292–301 (2006)

    Article  ADS  Google Scholar 

  20. Showalter, M. R., Cuzzi, J. N., Marouf, E. A. & Esposito, L. W. Satellite ‘wakes’ and the orbit of the Encke Gap moonlet. Icarus 66, 297–323 (1986)

    Article  ADS  Google Scholar 

  21. Showalter, M. R. Visual detection of 1981S13, Saturn’s eighteenth satellite, and its role in the Encke gap. Nature 351, 709–713 (1991)

    Article  ADS  Google Scholar 

  22. Seiß, M., Spahn, F., Sremčević, M. & Salo, H. Structures induced by small moonlets in Saturn’s rings: implications for the Cassini Mission. Geophys. Res. Lett. 32, 11205–11208 (2005)

    Article  ADS  Google Scholar 

  23. Lewis, M. C. & Stewart, G. R. Features around embedded moonlets in Saturn’s rings: the role of self-gravity and particle size distributions. Icarus (submitted)

  24. Durda, D. D. et al. Size frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: comparison with observed asteroid families. Icarus 186, 498–516 (2007)

    Article  ADS  Google Scholar 

  25. Karjalainen, R. & Salo, H. Gravitational accretion of particles in Saturn’s rings. Icarus 172, 328–348 (2004)

    Article  ADS  Google Scholar 

  26. Hedman, M. M. et al. Saturn’s dynamic D ring. Icarus 188, 89–107 (2007)

    Article  ADS  Google Scholar 

  27. Michel, P., Benz, W. & Richardson, D. C. Disruption of fragmented parent bodies as the origin of asteroid families. Nature 421, 608–611 (2003)

    Article  CAS  ADS  Google Scholar 

  28. Daisaka, H., Tanaka, H. & Ida, S. Viscosity in a dense planetary ring with self-gravitating particles. Icarus 154, 296–312 (2001)

    Article  ADS  Google Scholar 

  29. Cuzzi, J. N. & Estrada, P. R. Compositional evolution of Saturn’s rings due to meteoroid bombardment. Icarus 132, 1–35 (1998)

    Article  ADS  Google Scholar 

  30. Spahn, F. & Sponholz, H. Existence of moonlets in Saturn’s rings inferred from the optical depth profile. Nature 339, 607–608 (1989)

    Article  ADS  Google Scholar 

  31. Tiscareno, M. S., Burns, J. A., Hedman, M. M. & Porco, C. C. The population of propellers in Saturn's A ring. Astron. J. (submitted)

Download references

Acknowledgements

We acknowledge the efforts of the Cassini ISS team in the design and operation of the ISS instrument. This work was supported by the Cassini project, Deutsches Zentrum für Luft und Raumfahrt, Deutsche Forschungsgemeinschaft and the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miodrag Sremčević.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Methods with additional references, Supplementary Tables S1-S3 and Supplementary Figures S1-S16 with Legends. (PDF 4445 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sremčević, M., Schmidt, J., Salo, H. et al. A belt of moonlets in Saturn’s A ring. Nature 449, 1019–1021 (2007). https://doi.org/10.1038/nature06224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06224

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing