Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Metal saturation in the upper mantle

Abstract

The oxygen fugacity f O 2 of the Earth’s mantle is one of the fundamental variables in mantle petrology. Through ferric–ferrous iron and carbon–hydrogen–oxygen equilibria, f O 2 influences the pressure–temperature positions of mantle solidi and compositions of small-degree mantle melts1,2,3. Among other parameters, f O 2 affects the water storage capacity and rheology of the mantle4,5. The uppermost mantle, as represented by samples and partial melts, is sufficiently oxidized to sustain volatiles, such as H2O and CO2, as well as carbonatitic melts6,7, but it is not known whether the shallow mantle is representative of the entire upper mantle. Using high-pressure experiments, we show here that large parts of the asthenosphere are likely to be metal-saturated. We found that pyroxene and garnet synthesized at >7 GPa in equilibrium with metallic Fe can incorporate sufficient ferric iron that the mantle at >250 km depth is so reduced that an (Fe,Ni)-metal phase may be stable. Our results indicate that the oxidized nature of the upper mantle can no longer be regarded as being representative for the Earth’s upper mantle as a whole and instead that oxidation is a shallow phenomenon restricted to an upper veneer only about 250 km in thickness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Backscattered images of run products.
Figure 2: Experimental clinopyroxene (a) and garnet–majorite compositions (b).
Figure 3: Pressure effect on the Fe 3+ /ΣFe atomic ratios of pyroxene and garnet (redox equilibrium with metallic Fe).
Figure 4: Correlation between the Fe 3+ /ΣFe atomic ratio and the Si 3 +  x excess in garnet–majorite solid solutions.

Similar content being viewed by others

References

  1. Taylor, W. R. & Green, D. H. in Magmatic Processes: Physicochemical Principles (ed. Mysen, B. O.) 121–138 (Geochemical Society USA Special Publication 1, University Park, Pennsylvania, 1987)

    Google Scholar 

  2. Ballhaus, C., Berry, R. F. & Green, D. H. Oxygen fugacity controls in the Earth's upper mantle. Nature 348, 437–440 (1990)

    Article  ADS  CAS  Google Scholar 

  3. Dasgupta, R. & Hirschmann, M. M. Melting in the Earth's deep upper mantle caused by carbon dioxide. Nature 440, 659–662 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Kohlstedt, D. L., Keppler, H. & Rubie, D. C. Solubility of water in the alpha, beta and gamma phases of (Mg,Fe)2SiO4 . Contrib. Mineral. Petrol. 123, 345–357 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Keppler, H. & Rauch, M. Water solubility in nominally anhydrous minerals measured by FTIR and 1H MAS NMR; the effect of sample preparation. Phys. Chem. Miner. 27, 371–376 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Matveev, S., Ballhaus, C., Fricke, K., Trunckenbrodt, J. & Ziegenbein, D. CHO volatiles under upper mantle conditions. I. Experimental results. Geochim. Cosmochim. Acta 61, 3081–3088 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Wallace, M. E. & Green, D. H. An experimental determination of primary carbonatite magma composition. Nature 335, 343–346 (1988)

    Article  ADS  CAS  Google Scholar 

  8. Frost, B. R. in Oxide Minerals; Petrologic and Magnetic Significance (ed. Lindsley, D. H.) 1–9 Reviews in Mineralogy (ed. Ribbe, P. H.) Vol. 25 (Mineralogical Society of America, Washington DC, 1991)

    Google Scholar 

  9. O'Neill, H. St. C. The origin of the Moon and the early history of the Earth – A chemical model. Part 2: The Earth. Geochim. Cosmochim. Acta 55, 1159–1172 (1991)

    Article  ADS  CAS  Google Scholar 

  10. Luth, R. W., Virgo, D., Boyd, F. R. & Wood, B. J. Ferric iron in mantle-derived garnets. Contrib. Mineral. Petrol. 104, 56–72 (1990)

    Article  ADS  CAS  Google Scholar 

  11. Ballhaus, C., Berry, R. F. & Green, D. H. Experimental calibration of the olivine–orthopyroxene–spinel oxygen barometer—implications for oxygen fugacity in the Earth's upper mantle. Contrib. Mineral. Petrol. 107, 27–40 (1991)

    Article  ADS  CAS  Google Scholar 

  12. Wood, B. J., Bryndzia, L. T. & Johnson, K. E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248, 337–345 (1990)

    Article  ADS  CAS  Google Scholar 

  13. Ballhaus, C. Is the upper mantle metal-saturated? Earth Planet. Sci. Lett. 132, 75–86 (1995)

    Article  ADS  CAS  Google Scholar 

  14. Woodland, A. B. & Koch, M. Variation in the oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet. Sci. Lett. 214, 295–310 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Palme, H. & O'Neill, H. St. C. in The Mantle and Core (ed. Carlson, R. W.) 1–38 Treatise on Geochemistry (eds Holland, H. D. & Turekian K. K.) Vol. 2 (Elsevier–Pergamon, Oxford, 2003)

    Google Scholar 

  16. van Aken, P. A. & Liebscher, B. Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L23 electron energy-loss near-edge spectra. Phys. Chem. Miner. 29, 188–200 (2002)

    Article  ADS  CAS  Google Scholar 

  17. van Aken, P. A., Liebscher, B. & Styrsa, V. J. Quantitative determination of iron oxidation states in minerals using Fe L2,3-edge electron energy-loss near-edge structure spectroscopy. Phys. Chem. Miner. 25, 323–327 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Irifune, T. An experimental investigation of the pyroxene–garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Phys. Earth Planet. Inter. 45, 324–336 (1987)

    Article  ADS  CAS  Google Scholar 

  19. Canil, D. & O'Neill, H. St C. Distribution of ferric iron in some upper-mantle assemblages. J. Petrol. 37, 609–635 (1996)

    Article  ADS  CAS  Google Scholar 

  20. O'Neill, H. St C. et al. Mössbauer spectroscopy of mantle transition zone phases and determination of minimum Fe3+ content. Am. Mineral. 78, 456–460 (1993)

    CAS  Google Scholar 

  21. Frost, D. J. et al. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428, 409–412 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005)

    Article  ADS  CAS  Google Scholar 

  23. Sinmyo, R., Hirose, K., O'Neill, H. St. C. & Okunishi, E. Ferric iron in Al-bearing post-perovskite. Geophys. Res. Lett. 33 L12S13 doi: 10.1029/2006GL025858 (2006)

    Article  CAS  Google Scholar 

  24. McCammon, C. A. & Ross, N. L. Crystal chemistry of ferric iron in (Mg,Fe)(Si,Al)O3 majorite with implications for the transition zone. Phys. Chem. Miner. 30, 206–216 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Ringwood, A. E. Origin of chondrites. Nature 207, 701–704 (1965)

    Article  ADS  CAS  Google Scholar 

  26. Meisel, T., Walker, R. J. & Morgan, J. W. The osmium isotopic composition of the Earth's primitive upper mantle. Nature 383, 517–520 (1996)

    Article  ADS  CAS  Google Scholar 

  27. Jones, J. H. & Drake, M. J. Geochemical constraints on core formation in the Earth. Nature 322, 221–228 (1986)

    Article  ADS  CAS  Google Scholar 

  28. Eggler, D. H. & Baker, D. R. in High Pressure Research in Geophysics (eds Akimoto, S. & Manghnani, M. H.) 237–250 (Center Academic, Tokyo, 1982)

    Book  Google Scholar 

  29. Jacobs, D. E., Kronz, A. & Viljoen, K. S. Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contrib. Mineral. Petrol. 146, 566–576 (2004)

    Article  ADS  Google Scholar 

  30. Stachel, T., Harris, J. W. & Brey, G. P. Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contrib. Mineral. Petrol. 132, 34–47 (1998)

    Article  ADS  CAS  Google Scholar 

  31. Bellis, A. J. & Canil, D. Ferric iron in CaTiO3 perovskite as an oxygen barometer for kimberlitic magmas. I: Experimental calibration. J. Petrol. 48, 219–230 (2007)

    Article  ADS  CAS  Google Scholar 

  32. Canil, D. & Bellis, A. J. Ferric iron in CaTiO3 perovskite as an oxygen barometer for kimberlite magmas. II: Applications. J. Petrol. 48, 231–252 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Museum of Natural History in London for providing Karoo picrite samples from Malawi. Comments on the manuscript by R. Frost and D. Canil and D. Frost improved the paper. Financial support by the German Research Council to C.B. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arno Rohrbach or Chris Ballhaus.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints.

Supplementary information

Supplementary Information

The file contains Supplementary Discussion with additional references; Supplementary Figure S1 with Legend and Supplementary Table S1. Supplementary Discussion uses Karoo picrites from southern Malawi to discuss the possibility that melts from metal–saturated sources can be recognized by their olivine compositions. Supplementary Fig. S1 shows the NiO contents and Ni/Co atomic ratios of olivines in the Karoo picrite sample. The Supplementary Table S1 lists the starting composition, run conditions and representative electron microprobe analyses of the run products. Details about electron microprobe and EELS measurements are given in the legend. (PDF 295 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohrbach, A., Ballhaus, C., Golla–Schindler, U. et al. Metal saturation in the upper mantle. Nature 449, 456–458 (2007). https://doi.org/10.1038/nature06183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06183

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing