Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1

Abstract

AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis in mammals and is an attractive target for drug discovery against diabetes, obesity and other diseases1,2,3,4,5. The AMPK homologue in Saccharomyces cerevisiae, known as SNF1, is essential for responses to glucose starvation as well as for other cellular processes, although SNF1 seems to be activated by a ligand other than AMP1,6,7,8. Here we report the crystal structure at 2.6 Å resolution of the heterotrimer core of SNF1. The ligand-binding site in the γ-subunit (Snf4) has clear structural differences from that of the Schizosaccharomyces pombe enzyme9, although our crystallographic data indicate that AMP can also bind to Snf4. The glycogen-binding domain in the β-subunit (Sip2) interacts with Snf4 in the heterotrimer but should still be able to bind carbohydrates10,11,12,13. Our structure is supported by a large body of biochemical and genetic data on this complex1,6,7,8,14,15,16,17,18. Most significantly, the structure reveals that part of the regulatory sequence in the α-subunit (Snf1)15,16,18,19 is sequestered by Snf4, demonstrating a direct interaction between the α- and γ-subunits and indicating that our structure may represent the heterotrimer core of SNF1 in its activated state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the heterotrimer core of S. cerevisiae SNF1.
Figure 2: Large conformational differences for the Bateman2 domain of Snf4.
Figure 3: Structure of the ligand-binding site in S. cerevisiae Snf4.

Similar content being viewed by others

References

  1. Kahn, B. B., Alquier, T., Carling, D. & Hardie, D. G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25 (2005)

    Article  CAS  Google Scholar 

  2. Hardie, D. G. & Sakamoto, K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 21, 48–60 (2006)

    Article  CAS  Google Scholar 

  3. Carling, D. AMP-activated protein kinase: balancing the scales. Biochimie 87, 87–91 (2005)

    Article  CAS  Google Scholar 

  4. Kemp, B. E. et al. AMP-activated protein kinase, super metabolic regulator. Biochem. Soc. Trans. 31, 162–168 (2003)

    Article  CAS  Google Scholar 

  5. Viollet, B. et al. Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochem. Soc. Trans. 31, 216–219 (2003)

    Article  CAS  Google Scholar 

  6. Hardie, D. G., Carling, D. & Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67, 821–855 (1998)

    Article  CAS  Google Scholar 

  7. Hong, S.-P. & Carlson, M. Regulation of Snf1 protein kinase in response to environmental stress. J. Biol. Chem. 282, 16838–16845 (2007)

    Article  CAS  Google Scholar 

  8. Sanz, P. Snf1 protein kinase: a key player in the response to cellular stress in yeast. Biochem. Soc. Trans. 31, 178–181 (2003)

    Article  CAS  Google Scholar 

  9. Townley, R. & Shapiro, L. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase. Science 315, 1726–1729 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Polekhina, G. et al. Structural basis for glycogen recognition by AMP-activated protein kinase. Structure 13, 1453–1462 (2005)

    Article  CAS  Google Scholar 

  11. Polekhina, G. et al. AMPK β subunit targets metabolic stress sensing to glycogen. Curr. Biol. 13, 867–871 (2003)

    Article  CAS  Google Scholar 

  12. Wiatrowski, H. A. et al. Mutations in the Gal83 glycogen-binding domain activate the Snf1/Gal83 kinase pathway by a glycogen-independent mechanism. Mol. Cell. Biol. 24, 352–361 (2004)

    Article  CAS  Google Scholar 

  13. Hudson, E. R. et al. A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol. 13, 861–866 (2003)

    Article  CAS  Google Scholar 

  14. Iseli, T. J. et al. AMP-activated protein kinase β subunit tethers α and γ subunits via its C-terminal sequence (186–270). J. Biol. Chem. 280, 13395–13400 (2005)

    Article  CAS  Google Scholar 

  15. Jiang, R. & Carlson, M. Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev. 10, 3105–3115 (1996)

    Article  CAS  Google Scholar 

  16. Crute, B. E., Seefeld, K., Gamble, J., Kemp, B. E. & Witters, L. A. Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase. J. Biol. Chem. 273, 35347–35354 (1998)

    Article  CAS  Google Scholar 

  17. Jiang, R. & Carlson, M. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol. Cell. Biol. 17, 2099–2106 (1997)

    Article  CAS  Google Scholar 

  18. Leech, A., Nath, N., McCartney, R. R. & Schmidt, M. C. Isolation of mutations in the catalytic domain of the Snf1 kinase that render its activity independent of the Snf4 subunit. Eukaryot. Cell 2, 265–273 (2003)

    Article  CAS  Google Scholar 

  19. Pang, T. et al. Conserved α-helix acts as autoinhibitory sequence in AMP-activated protein kinase α subunits. J. Biol. Chem. 282, 495–506 (2007)

    Article  CAS  Google Scholar 

  20. Rudolph, M. J., Amodeo, G. A., Bai, Y. & Tong, L. Crystal structure of the protein kinase domain of yeast AMP-activated protein kinase Snf1. Biochem. Biophys. Res. Commun. 337, 1224–1228 (2005)

    Article  CAS  Google Scholar 

  21. Nayak, V. et al. Structure and dimerization of the kinase domain from yeast Snf1, a member of the Snf1/AMPK protein family. Structure 14, 477–485 (2006)

    Article  CAS  Google Scholar 

  22. Bateman, A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem. Sci. 22, 12–13 (1997)

    Article  CAS  Google Scholar 

  23. Kemp, B. E. Bateman domains and adenosine derivatives form a binding contract. J. Clin. Invest. 113, 182–184 (2004)

    Article  CAS  Google Scholar 

  24. Scott, J. W. et al. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113, 274–284 (2004)

    Article  CAS  Google Scholar 

  25. Hamilton, S. R. et al. An activating mutation in the γ1 subunit of the AMP-activated protein kinase. FEBS Lett. 500, 163–168 (2001)

    Article  CAS  Google Scholar 

  26. Rudolph, M. J. et al. Structure of the Bateman2 domain of yeast Snf4: dimeric association and relevance for AMP binding. Structure 15, 65–74 (2007)

    Article  CAS  Google Scholar 

  27. Day, P. et al. Structure of a CBS-domain pair from the regulatory γ1 subunit of human AMPK in complex with AMP and ZMP. Acta Crystallogr. D 63, 587–596 (2007)

    Article  CAS  Google Scholar 

  28. Adams, J. et al. Intrasteric control of AMPK via the γ1 subunit AMP allosteric regulatory site. Protein Sci. 13, 155–165 (2004)

    Article  CAS  Google Scholar 

  29. Sanders, M. J., Grondin, P. O., Hegarty, B. D., Snowden, M. A. & Carling, D. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J. 403, 139–148 (2007)

    Article  CAS  Google Scholar 

  30. Carson, M. Ribbon models of macromolecules. J. Mol. Graph. 5, 103–106 (1987)

    Article  CAS  Google Scholar 

  31. Hendrickson, W. A., Horton, J. R. & LeMaster, D. M. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672 (1990)

    Article  CAS  Google Scholar 

  32. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  33. Storoni, L. C., McCoy, A. J. & Read, R. J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D 60, 432–438 (2004)

    Article  Google Scholar 

  34. Townley, R. & Shapiro, L. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase. Science 315, 1726–1729 (2007)

    Article  ADS  CAS  Google Scholar 

  35. Polekhina, G. et al. Structural basis for glycogen recognition by AMP-activated protein kinase. Structure 13, 1453–1462 (2005)

    Article  CAS  Google Scholar 

  36. Brunger, A. T. et al. Crystallography & NMR System: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  37. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  38. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  39. Emsley, P. & Cowtan, K. D. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Carlson for helpful discussions; H. Robinson and N. Whalen for setting up the X29A beamline; and J. Schwanof and R. Abramowitz for setting up the X4C beamline at the National Synchrotron Light Source. This research is supported in part by an NIH grant to L.T. G.A.A. was supported by an NIH training program in molecular biophysics.

The atomic coordinates are deposited at the Protein Data Bank under accession number 2QLV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Tong.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains a more detailed Supplementary Methods section with additional references, Supplementary Table1 and Supplementary Figures 1-9 with Legends. (PDF 3690 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amodeo, G., Rudolph, M. & Tong, L. Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature 449, 492–495 (2007). https://doi.org/10.1038/nature06127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06127

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing