Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of the MgtE Mg2+ transporter

Abstract

The magnesium ion Mg2+ is a vital element involved in numerous physiological processes. Mg2+ has the largest hydrated radius among all cations, whereas its ionic radius is the smallest. It remains obscure how Mg2+ transporters selectively recognize and dehydrate the large, fully hydrated Mg2+ cation for transport1. Recently the crystal structures of the CorA Mg2+ transporter2,3,4,5 were reported6,7,8. The MgtE family of Mg2+ transporters is ubiquitously distributed in all phylogenetic domains9,10,11, and human homologues have been functionally characterized and suggested to be involved in magnesium homeostasis12,13,14. However, the MgtE transporters have not been thoroughly characterized. Here we determine the crystal structures of the full-length Thermus thermophilus MgtE at 3.5 Å resolution, and of the cytosolic domain in the presence and absence of Mg2+ at 2.3 Å and 3.9 Å resolutions, respectively. The transporter adopts a homodimeric architecture, consisting of the carboxy-terminal five transmembrane domains and the amino-terminal cytosolic domains, which are composed of the superhelical N domain and tandemly repeated cystathionine-β-synthase domains. A solvent-accessible pore nearly traverses the transmembrane domains, with one potential Mg2+ bound to the conserved Asp 432 within the pore. The transmembrane (TM)5 helices from both subunits close the pore through interactions with the ‘connecting helices’, which connect the cystathionine-β-synthase and transmembrane domains. Four putative Mg2+ ions are bound at the interface between the connecting helices and the other domains, and this may lock the closed conformation of the pore. A structural comparison of the two states of the cytosolic domains showed the Mg2+-dependent movement of the connecting helices, which might reorganize the transmembrane helices to open the pore. These findings suggest a homeostasis mechanism, in which Mg2+ bound between cytosolic domains regulates Mg2+ flux by sensing the intracellular Mg2+ concentration. Whether this presumed regulation controls gating of an ion channel or opening of a secondary active transporter remains to be determined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the MgtE Mg 2+ transporter.
Figure 2: MgtE pore.
Figure 3: Putative Mg 2+ binding sites.
Figure 4: Proposed Mg 2+ homeostasis mechanism.

Similar content being viewed by others

References

  1. Maguire, M. E. Magnesium transporters: properties, regulation and structure. Front. Biosci. 11, 3149–3163 (2006)

    Article  CAS  Google Scholar 

  2. Nelson, D. L. & Kennedy, E. P. Magnesium transport in Escherichia coli. Inhibition by cobaltous ion. J. Biol. Chem. 246, 3042–3049 (1971)

    CAS  PubMed  Google Scholar 

  3. Hmiel, S. P., Snavely, M. D., Miller, C. G. & Maguire, M. E. Magnesium transport in Salmonella typhimurium: characterization of magnesium influx and cloning of a transport gene. J. Bacteriol. 168, 1444–1450 (1986)

    Article  CAS  Google Scholar 

  4. Bui, D. M., Gregan, J., Jarosch, E., Ragnini, A. & Schweyen, R. J. The bacterial magnesium transporter CorA can functionally substitute for its putative homologue Mrs2p in the yeast inner mitochondrial membrane. J. Biol. Chem. 274, 20438–20443 (1999)

    Article  CAS  Google Scholar 

  5. Kehres, D. G. & Maguire, M. E. Structure, properties and regulation of magnesium transport proteins. Biometals 15, 261–270 (2002)

    Article  CAS  Google Scholar 

  6. Lunin, V. V. et al. Crystal structure of the CorA Mg2+ transporter. Nature 440, 833–837 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Eshaghi, S. et al. Crystal structure of a divalent metal ion transporter CorA at 2.9 angstrom resolution. Science 313, 354–357 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Payandeh, J. & Pai, E. F. A structural basis for Mg2+ homeostasis and the CorA translocation cycle. EMBO J. 25, 3762–3773 (2006)

    Article  CAS  Google Scholar 

  9. Townsend, D. E. et al. Cloning of the mgtE Mg2+ transporter from Providencia stuartii and the distribution of mgtE in Gram-negative and Gram-positive bacteria. J. Bacteriol. 177, 5350–5354 (1995)

    Article  CAS  Google Scholar 

  10. Smith, R. L., Thompson, L. J. & Maguire, M. E. Cloning and characterization of MgtE, a putative new class of Mg2+ transporter from Bacillus firmus OF4. J. Bacteriol. 177, 1233–1238 (1995)

    Article  CAS  Google Scholar 

  11. Wabakken, T., Rian, E., Kveine, M. & Aasheim, H. C. The human solute carrier SLC41A1 belongs to a novel eukaryotic subfamily with homology to prokaryotic MgtE Mg2+ transporters. Biochem. Biophys. Res. Commun. 306, 718–724 (2003)

    Article  CAS  Google Scholar 

  12. Goytain, A. & Quamme, G. A. Functional characterization of human SLC41A1, a Mg2+ transporter with similarity to prokaryotic MgtE Mg2+ transporters. Physiol. Genomics 21, 337–342 (2005)

    Article  CAS  Google Scholar 

  13. Goytain, A. & Quamme, G. A. Functional characterization of the human solute carrier, SLC41A2. Biochem. Biophys. Res. Commun. 330, 701–705 (2005)

    Article  CAS  Google Scholar 

  14. Sahni, J., Nelson, B. & Scharenberg, A. M. SLC41A2 encodes a plasma-membrane Mg2+ transporter. Biochem. J. 401, 505–513 (2007)

    Article  CAS  Google Scholar 

  15. Kowal, P., Gurtan, A. M., Stuckert, P., D'Andrea, A. D. & Ellenberger, T. Structural determinants of human FANCF protein that function in the assembly of a DNA damage signaling complex. J. Biol. Chem. 282, 2047–2055 (2007)

    Article  CAS  Google Scholar 

  16. Ignoul, S. & Eggermont, J. CBS domains: structure, function, and pathology in human proteins. Am. J. Physiol. Cell Physiol. 289, C1369–C1378 (2005)

    Article  CAS  Google Scholar 

  17. Bennetts, B. et al. Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels. J. Biol. Chem. 280, 32452–32458 (2005)

    Article  CAS  Google Scholar 

  18. Biemans-Oldehinkel, E., Mahmood, N. A. & Poolman, B. A sensor for intracellular ionic strength. Proc. Natl Acad. Sci. USA 103, 10624–10629 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Tieleman, D. P., Shrivastava, I. H., Ulmschneider, M. R. & Sansom, M. S. Proline-induced hinges in transmembrane helices: possible roles in ion channel gating. Proteins 44, 63–72 (2001)

    Article  CAS  Google Scholar 

  20. Roux, B. & MacKinnon, R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 285, 100–102 (1999)

    Article  CAS  Google Scholar 

  21. Kuo, A. et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300, 1922–1926 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Hattori, M., Tanaka, Y., Fukai, S., Ishitani, R. & Nureki, O. Crystallization and preliminary X-ray diffraction analysis of the full-length Mg2+ transporter MgtE. Acta Crystallogr. F 63, 682–684 (2007)

    Article  CAS  Google Scholar 

  23. Tanaka, Y., Hattori, M., Fukai, S., Ishitani, R. & Nureki, O. Crystallization and preliminary X-ray diffraction analysis of the cytosolic domain of the Mg2+ transporter MgtE. Acta Crystallogr. F 63, 678–681 (2007)

    Article  CAS  Google Scholar 

  24. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  25. Collaborative Computational Project 4 The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  26. Weeks, C. M. & Miller, R. The design and implementation of SnB v2.0. J. Appl. Cryst. 32, 120–124 (1999)

    Article  CAS  Google Scholar 

  27. de La Fortelle, E., Irwin, J. & Bricogne, G. Methods in Enzymology (eds C. W Carter & R. M. Sweet). 472–494 (1997)

    Google Scholar 

  28. Abrahams, J. P. & Leslie, A. G. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996)

    Article  CAS  Google Scholar 

  29. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  30. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  31. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991)

    Article  CAS  Google Scholar 

  32. Petrek, M. et al. CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7, 316 (2006)

    Article  Google Scholar 

  33. Delano, W. L. The PyMOL molecular graphics system. v.0. 97 〈http://pymol.sourceforge.net/〉 (2002)

  34. Ishitani, R. CueMol; Molecular visualization framework. v.1. 1 〈http://cuemol.sourceforge.jp/〉 (2006)

Download references

Acknowledgements

We thank the beam-line staffs at BL41XU of SPring-8 and BL5A of KEK for technical help during data collection, and Y. Sugita and T. Tsukazaki for suggestions. This work was supported by a SORST Program grant from JST (Japan Science and Technology) to O.N., by grants from MEXT to R.I., S.F. and O.N., and by grants from the Society for Research on Umami Taste, the Danone Institute, and the Yamazaki Foundation to O.N.

Author Contributions M.H. designed the research, carried out the crystallization of the full-length MgtE and the structure determinations, and wrote the paper, with editing from S.F., R.I. and O.N. Y.T. carried out the crystallization of the cytosolic domain of MgtE. S.F., R.I. and O.N. assisted with the structural determination. All authors discussed the results and commented on the manuscript. O.N. supervised the work.

The coordinates and structure factors have been deposited in the Protein Data Bank, under the accession codes 2YVX, 2YVY and 2YVZ for the full-length MgtE, and the Mg2+-bound and Mg2+-free cytosolic domains of MgtE, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Nureki.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Discussion, Supplementary Figures S1-S12 with Legends, Supplementary Tables S1-S3 and additional references. (PDF 17697 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattori, M., Tanaka, Y., Fukai, S. et al. Crystal structure of the MgtE Mg2+ transporter. Nature 448, 1072–1075 (2007). https://doi.org/10.1038/nature06093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06093

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing