Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Opposing LSD1 complexes function in developmental gene activation and repression programmes

Abstract

Precise control of transcriptional programmes underlying metazoan development is modulated by enzymatically active co-regulatory complexes, coupled with epigenetic strategies. One thing that remains unclear is how specific members of histone modification enzyme families, such as histone methyltransferases and demethylases, are used in vivo to simultaneously orchestrate distinct developmental gene activation and repression programmes. Here, we report that the histone lysine demethylase, LSD1—a component of the CoREST-CtBP co-repressor complex—is required for late cell-lineage determination and differentiation during pituitary organogenesis. LSD1 seems to act primarily on target gene activation programmes, as well as in gene repression programmes, on the basis of recruitment of distinct LSD1-containing co-activator or co-repressor complexes. LSD1-dependent gene repression programmes can be extended late in development with the induced expression of ZEB1, a Krüppel-like repressor that can act as a molecular beacon for recruitment of the LSD1-containing CoREST-CtBP co-repressor complex, causing repression of an additional cohort of genes, such as Gh, which previously required LSD1 for activation. These findings suggest that temporal patterns of expression of specific components of LSD1 complexes modulate gene regulatory programmes in many mammalian organs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LSD1 is required for cell-type-specific pituitary hormone expression.
Figure 2: LSD1 is involved in regulatory programmes in pituitary development.
Figure 3: LSD1 regulates gene expression during pituitary development.
Figure 4: Postpartum induction of the LSD1 complex in Gh restriction events.
Figure 5: The LSD1 complex has roles in restriction of Gh expression in lactotropes.

Similar content being viewed by others

References

  1. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression, how the genome integrates intrinsic and environmental signals. Nature Genet. 33, (Suppl.). 245–254 (2003)

    Article  CAS  Google Scholar 

  2. Fischle, W., Wang, Y. & Allis, C. D. Binary switches and modification cassettes in histone biology and beyond. Nature 425, 475–479 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nature Rev. Mol. Cell Biol. 6, 838–849 (2005)

    Article  CAS  Google Scholar 

  4. Chong, J. A. et al. REST, a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80, 949–957 (1995)

    Article  CAS  Google Scholar 

  5. Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF), a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–1363 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Andres, M. E. et al. CoREST, a functional corepressor required for regulation of neural-specific gene expression. Proc. Natl Acad. Sci. USA 96, 9873–9878 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Ballas, N. et al. Regulation of neuronal traits by a novel transcriptional complex. Neuron 31, 353–365 (2001)

    Article  CAS  Google Scholar 

  8. Lunyak, V. V. et al. Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science 298, 1747–1752 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Shi, Y. et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422, 735–738 (2003)

    Article  ADS  CAS  Google Scholar 

  10. You, A., Tong, J. K., Grozinger, C. M. & Schreiber, S. L. CoREST is an integral component of the CoREST–human histone deacetylase complex. Proc. Natl Acad. Sci. USA 98, 1454–1458 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Humphrey, G. W. et al. Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J. Biol. Chem. 276, 6817–6824 (2001)

    Article  CAS  Google Scholar 

  12. Nakamura, T. et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell 10, 1119–1128 (2002)

    Article  CAS  Google Scholar 

  13. Hakimi, M. A. et al. A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc. Natl Acad. Sci. USA 99, 7420–7425 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Hakimi, M. A. et al. A candidate X-linked mental retardation gene is a component of a new family of histone deacetylase-containing complexes. J. Biol. Chem. 278, 7234–7239 (2003)

    Article  CAS  Google Scholar 

  15. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004)

    Article  CAS  Google Scholar 

  16. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2005)

    Article  ADS  Google Scholar 

  18. Yamane, K. et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125, 483–495 (2006)

    Article  CAS  Google Scholar 

  19. Whetstine, J. R. et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467–481 (2006)

    Article  CAS  Google Scholar 

  20. Keegan, C. E. & Camper, S. A. Mouse knockout solves endocrine puzzle and promotes new pituitary lineage model. Genes Dev. 17, 677–682 (2003)

    Article  CAS  Google Scholar 

  21. Scully, K. M. & Rosenfeld, M. G. Pituitary development, regulatory codes in mammalian organogenesis. Science 295, 2231–2235 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Olson, L. E. et al. A homeodomain-mediated mechanism for β-catenin-dependent switching events dictates cell lineage determination. Cell 125, 593–605 (2006)

    Article  CAS  Google Scholar 

  23. Mayo, K. E. Molecular cloning and expression of a pituitary-specific receptor for growth hormone-releasing hormone. Mol. Endocrinol. 6, 1734–1744 (1992)

    CAS  PubMed  Google Scholar 

  24. Lin, C., Lin, S. C., Chang, C. P. & Rosenfeld, M. G. Pit-1-dependent expression of the receptor for growth hormone releasing factor mediates pituitary cell growth. Nature 360, 765–768 (1992)

    Article  ADS  CAS  Google Scholar 

  25. Godfrey, P. et al. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nature Genet. 4, 227–232 (1993)

    Article  CAS  Google Scholar 

  26. Maier, M. M. & Gessler, M. Comparative analysis of the human and mouse Hey1 promoter: Hey genes are new Notch target genes. Biochem. Biophys. Res. Commun. 275, 652–660 (2000)

    Article  CAS  Google Scholar 

  27. Oswald, F. et al. RBP-Jκ/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes. Mol. Cell. Biol. 25, 10379–10390 (2005)

    Article  CAS  Google Scholar 

  28. Zhu, X. et al. Sustained Notch signaling in progenitors is required for sequential emergence of distinct cell lineages during organogenesis. Genes Dev. 20, 2739–2753 (2006)

    Article  CAS  Google Scholar 

  29. Sornson, M. W. et al. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 384, 327–333 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Ward, R. D. et al. Role of PROP1 in pituitary gland growth. Mol. Endocrinol. 19, 698–710 (2005)

    Article  CAS  Google Scholar 

  31. Gage, P. J., Roller, M. L., Saunders, T. L., Scarlett, L. M. & Camper, S. A. Anterior pituitary cells defective in the cell-autonomous factor, df, undergo cell lineage specification but not expansion. Development 122, 151–160 (1996)

    CAS  PubMed  Google Scholar 

  32. Botz, J. et al. Cell cycle regulation of the murine cyclin E gene depends on an E2F binding site in the promoter. Mol. Cell. Biol. 16, 3401–3409 (1996)

    Article  CAS  Google Scholar 

  33. Hu, N. et al. Heterozygous Rb-1 delta 20/+ mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene 9, 1021–1027 (1994)

    CAS  PubMed  Google Scholar 

  34. Lasorella, A., Rothschild, G., Yokota, Y., Russell, R. G. & Iavarone, A. Id2 mediates tumor initiation, proliferation, and angiogenesis in Rb mutant mice. Mol. Cell. Biol. 25, 3563–3574 (2005)

    Article  CAS  Google Scholar 

  35. Behringer, R. R., Mathews, L. S., Palmiter, R. D. & Brinster, R. L. Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Genes Dev. 2, 453–461 (1988)

    Article  CAS  Google Scholar 

  36. Borrelli, E., Heyman, R. A., Arias, C., Sawchenko, P. E. & Evans, R. M. Transgenic mice with inducible dwarfism. Nature 339, 538–541 (1989)

    Article  ADS  CAS  Google Scholar 

  37. Scully, K. M. et al. Allosteric effects of Pit-1 DNA sites on long-term repression in cell type specification. Science 290, 1127–1131 (2000)

    Article  ADS  CAS  Google Scholar 

  38. Williams, T. M. et al. Identification of a zinc finger protein that inhibits IL-2 gene expression. Science 254, 1791–1794 (1991)

    Article  ADS  CAS  Google Scholar 

  39. Postigo, A. A. & Dean, D. C. ZEB represses transcription through interaction with the corepressor CtBP. Proc. Natl Acad. Sci. USA 96, 6683–6688 (1999)

    Article  ADS  CAS  Google Scholar 

  40. Fernandes, I. et al. Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms. Mol. Cell 11, 139–150 (2003)

    Article  CAS  Google Scholar 

  41. Perissi, V. & Rosenfeld, M. G. Controlling nuclear receptors, the circular logic of cofactor cycles. Nature Rev. Mol. Cell Biol. 6, 542–554 (2005)

    Article  CAS  Google Scholar 

  42. Satijn, D. P. et al. Interference with the expression of a novel human polycomb protein, hPc2, results in cellular transformation and apoptosis. Mol. Cell. Biol. 17, 6076–6086 (1997)

    Article  CAS  Google Scholar 

  43. Kagey, M. H., Melhuish, T. A. & Wotton, D. The polycomb protein Pc2 is a SUMO E3. Cell 113, 127–137 (2003)

    Article  CAS  Google Scholar 

  44. Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872 (2005)

    Article  CAS  Google Scholar 

  45. Ooi, G. T., Tawadros, N. & Escalona, R. M. Pituitary cell lines and their endocrine applications. Mol. Cell. Endocrinol. 228, 1–21 (2004)

    Article  CAS  Google Scholar 

  46. Korach, K. S. Insights from the study of animals lacking functional estrogen receptor. Science 266, 1524–1527 (1994)

    Article  ADS  CAS  Google Scholar 

  47. Chamberlain, E. M. & Sanders, M. M. Identification of the novel player δEF1 in estrogen transcriptional cascades. Mol. Cell. Biol. 19, 3600–3606 (1999)

    Article  CAS  Google Scholar 

  48. Lieberman, M. E., Slabaugh, M. B., Rutledge, J. J. & Gorski, J. The role of estrogen in the differentiation of prolactin producing cells. J. Steroid Biochem. 19, 275–281 (1983)

    Article  CAS  Google Scholar 

  49. Day, R. N., Koike, S., Sakai, M., Muramatsu, M. & Maurer, R. A. Both Pit-1 and the estrogen receptor are required for estrogen responsiveness of the rat prolactin gene. Mol. Endocrinol. 4, 1964–1971 (1990)

    Article  CAS  Google Scholar 

  50. Long, J., Zuo, D. & Park, M. Pc2-mediated sumoylation of Smad-interacting protein 1 attenuates transcriptional repression of E-cadherin. J. Biol. Chem. 280, 35477–35489 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Nelson and L.Wang for technical assistance, L. Olson for generating Pitx1 Cre+ mice, Y. Geng for the Ccne1 promoter reporter, W. Herr for the generous gift of anti-WDR5 antibody, A. Gonzalez, J. Liu for advice on reagents, and J. Hightower and M. Fisher for figure and manuscript preparation. M.G.R is an investigator with HHMI. This work was supported by grants from the NIH and NCI to M.G.R., C.K.G. and X.-D.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Rosenfeld.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-8 with Legends and Supplementary Methods. (PDF 8391 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Scully, K., Zhu, X. et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446, 882–887 (2007). https://doi.org/10.1038/nature05671

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05671

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing