Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global warming and climate forcing by recent albedo changes on Mars

A Corrigendum to this article was published on 05 April 2007

Abstract

For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs1,2. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more3,4,5. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by 0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years6,7,8. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Albedo and changes in albedo.
Figure 2: The effect of albedo changes on air temperature and wind stress.
Figure 3: MGCM air temperature differences during perihelion season.

Similar content being viewed by others

References

  1. Flammarion, C. La Planète Mars et ses Conditions d’Habitabilité Vols 1 and 2 (Gauthier Villars et Fils, Paris, 1892)

    Google Scholar 

  2. de Vaucouleurs, G. Physics of the Planet Mars (Faber and Faber, London, 1954)

    Google Scholar 

  3. Christensen, P. R. Global albedo variations on Mars: Implications for active aeolian transport, deposition, and erosion. J. Geophys. Res. 93, (B7)7611–7624 (1988)

    Article  ADS  Google Scholar 

  4. Geissler, P. E. Three decades of Martian surface changes. J. Geophys. Res. 110 E02001 doi: 10.1029/2004JE002345 (2005)

    Article  ADS  Google Scholar 

  5. Szwast, M. A., Richardson, M. I. & Vasavada, A. R. Surface dust redistribution on Mars as observed by the Mars Global Surveyor and Viking Orbiters. J. Geophys. Res. 111 E11008 doi: 10.1029/2005JE002485 (2006)

    Article  ADS  Google Scholar 

  6. Malin, M. C., Caplinger, M. A. & Davis, S. D. Observational evidence for an active surface reservoir of solid carbon dioxide on Mars. Science 294, 2146–2148 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Byrne, S. & Ingersoll, A. P. A sublimation model for Martian south polar ice features. Science 299, 1051–1053 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Thomas, P. C. et al. South polar residual cap of Mars: Features, stratigraphy, and changes. Icarus 174, 535–559 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Clancy, R. T. et al. An intercomparison of ground-based millimetre, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105, (E4)9553–9571 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Liu, J., Richardson, M. I. & Wilson, R. J. An assessment of the global, seasonal, and interannual spacecraft record of Martian climate in the thermal infrared. J. Geophys. Res. 108 (E8)5089 doi: 10.1029/2002JE001921 (2003)

    Article  Google Scholar 

  11. Smith, M. D. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Haberle, R. M. et al. General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data. J. Geophys. Res. 104, (E4)8957–8974 (1999)

    Article  ADS  Google Scholar 

  13. Kieffer, H. H. et al. Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res. 82, 4249–4292 (1977)

    Article  ADS  CAS  Google Scholar 

  14. Pleskot, L. K. & Miner, E. D. Time variability of martian bolometric albedo. Icarus 45, 179–201 (1981)

    Article  ADS  Google Scholar 

  15. Christensen, P. R. et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res. 106, (E10)23823–23872 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Kieffer, H. H., Davis, P. A. & Soderblom, L. A. Mars’ global properties — Maps and applications. Proc. Lunar Planet. Sci. Conf. XII, 1395–1417 (1982)

    ADS  Google Scholar 

  17. Houghton, J. T. et al. Climate Change: The Scientific Basis 105–107 (Cambridge Univ. Press, New York, 2001)

    Google Scholar 

  18. Kahre, M. A. et al. Observing the martian surface albedo pattern: Comparing the AEOS and TES data sets. Icarus 179, 55–62 (2005)

    Article  ADS  Google Scholar 

  19. Rennó, N. O., Burkett, M. L. & Larkin, M. P. A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 3244–3252 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zurek, R. W. & Martin, L. J. Interannual variability of planet-encircling dust storms on Mars. J. Geophys. Res. 98, (E2)3247–3259 (1993)

    Article  ADS  Google Scholar 

  21. McKim, R. Telescopic Martian dust storms: A narrative and catalogue. Mem. Br. Astron. Assoc. 44, 1–168 (1999)

    Google Scholar 

  22. Vasavada, A. R. et al. Surface properties of Mars’ polar layered deposits and polar landing sites. J. Geophys. Res. 105, (E3)6961–6970 (1999)

    Article  ADS  Google Scholar 

  23. Paige, D. A., Bachman, J. E. & Keegan, K. D. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations, 1, North polar region. J. Geophys. Res. 99, (E12)25959–25992 (1994)

    Article  ADS  Google Scholar 

  24. Paige, D. A. & Keegan, K. D. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations, 2, South polar region. J. Geophys. Res. 99, (E12)25993–26014 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Schaeffer for help with the MGCM, and T. Michaels and R. Zurek for comments and suggestions. This work was supported by the NASA Mars Data Analysis Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lori K. Fenton or Paul E. Geissler.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenton, L., Geissler, P. & Haberle, R. Global warming and climate forcing by recent albedo changes on Mars. Nature 446, 646–649 (2007). https://doi.org/10.1038/nature05718

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05718

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing