Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sirtuins as potential targets for metabolic syndrome

Abstract

Metabolic syndrome threatens health gains made during the past century. Physiological processes degraded by this syndrome are often oppositely affected by calorie restriction, which extends lifespan and prevents disease in rodents. Recent research in the field of ageing has begun to identify important mediators of calorie restriction, offering the hope of new drugs to improve healthspan. Moreover, if metabolic syndrome and calorie restriction are opposite extremes of the same metabolic spectrum, calorie restriction mimetics might provide another therapeutic approach to metabolic syndrome. Sirtuins and other important metabolic pathways that affect calorie restriction may serve as entry points for drugs to treat metabolic syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolic syndrome and calorie restriction are balanced at opposite ends of the same spectrum by diet and physical activity.
Figure 2: Pathways of SIR2 activation by moderate calorie restriction in yeast and Drosophila.
Figure 3: Influence of SIRT1 on glucose homeostasis in three mammalian tissue types.
Figure 4: Functions of SIRT3 and SIRT4 in regulating the entry of acetate or amino acids into central metabolism.
Figure 5: Model of the effects of SIRT3, SIRT4 and SIRT7 in different tissues during calorie restriction.

Similar content being viewed by others

References

  1. Luchsinger, J. A. A work in progress: the metabolic syndrome. Sci. Aging Knowl. Environ. 10, pe19 (2006).

    Google Scholar 

  2. Grundy, S. M. et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 112, 2735–2752 (2005).

    Article  PubMed  Google Scholar 

  3. Wilson, P. W. F., D’Agostino, R. B., Parise, H., Sullivan, L. & Meigs, J. B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 112, 3066–3072 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Weindruch, R. & Walford, R. L. The Retardation of Aging and Disease by Dietary Restriction (Charles C. Thomas, Springfield, Illlinois, 1988).

    Google Scholar 

  5. Holliday, R. Food, reproduction, and longevity: is the extended life span of calorie-restricted animals and evolutionary adaptation? BioEssays 10, 125–127 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in saccharomyces cerevisiae by two different machanisms. Genes Dev. 13, 2570–2580 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in caenorhabditis elegans. Nature 410, 227–230 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Wood, J. G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686–689 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Landry, J. et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl Acad. Sci. USA 97, 5807–5811 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernandes, G., Yunis, E.J. & Good, R. A. Suppression of adenocarcinoma by the immunological consequences of calorie restriction. Nature 263, 504–507 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Zhu, H., Gou, Q. & Mattson, M. P. Dietary restriction protects hippocampal neurons against the death-promoting action of presenilin-1 mutation. Brain Res. 842, 224–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Ingram, D. K., Weindruch, R., Spangler, E. L., Freeman, J. R. & Walford, R. L. Dietary restriction benifits learning and motor performance of aged mice. J. Gerontol. 42, 78–81 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Sinclair, D. A. & Guarente, L. Extrachromosomal rDNA circles — a cause of aging in yeast. Cell 91, 1033–1042 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nystrom, T. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751–1753 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Lin, S. J., Defessez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Lin, S. J. et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344–348 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Lamming, D. W. et al. HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309, 1861–1864 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Lin, S.-J., Ford, E., Haigis, M., Liszt, G. & Guarente, L. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 18, 12–16 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O. & Sinclair, D. A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharamyces cerevisiae. Nature 423, 181–185 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaeberlein, M., Kirkland, K. T., Fields, S. & Kennedy, B. K. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol. 2, e296 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kaeberlein, M. et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193–1197 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Rogina, B., Helfand, S. L. & Frankel, S. Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 298, 1745 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Rogina, B. & Helfand, S. L. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl Acad. Sci. USA 101, 15998–16003 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, Y. & Tissenbaum, H. A. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev. 127, 48–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, D., Steele, A. D., Lindquist, S. & Guarente, L. Increase in activity during calorie restriction requires Sirt1. Science 310, 1641 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Vaziri, H. et al. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Cohen, H. Y. et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls bax-mediated apoptosis. Mol. Cell 13, 627–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Cohen, H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429, 771–776 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bordone, L. et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells. PLoS Biol. 4, e31 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Moynihan, K. A. et al. Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2, 105–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Kitamura, Y. I. et al. FoxO1 protects against pancreatic β cell failure through NeuroD and Mafa induction. Cell Metab. 2, 153–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Nemoto, S., Fergusson, M. M. & Finkel, T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem. 280, 16456–16460 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Accili, D. & Arden, K. C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Taniguchi, C. M., Emanuelli, B. & Kahn, C. R. Critical nodes in signaling pathways: insights into insulin action. Nature Rev. Mol. Cell Biol. 7, 85–96 (2006).

    Article  CAS  Google Scholar 

  41. Nisoli, E. et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314–317 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Hagopian, K., Ramsey, J. J. & Weindruch, R. Influence of age and calorie restriction on liver glycolytic enxyme activities and metabolite concentrations in mice. Exp. Gerontol. 38, 253–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Onyango, P., Celic, I., McCaffery, J. M., Boeke, J. D. & Feinberg, A. P. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc. Natl Acad. Sci. USA 99, 13653–13658 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schwer, B., North, B. J., Frye, R. A., Ott, M. & Verdin, E. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell Biol. 158, 647–657 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haigis, M. C. et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β-cells. Cell 126, 941–956 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Schwer, B., Bunkenborg, J., Verdin, R. O., Andersen, J. S. & Verdin, E. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synsthetase2. Proc. Natl Acad. Sci. USA 103, 10224–10229 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hallows, W. C., Lee, S. & Denu, J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl Acad. Sci. USA 103, 10230–10235 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Starai, V. J., Celic, I., Cole, R. N., Boeke, J. D. & Escalante-Semerena, J. C. Sir2-dependent activationof acetyl-CoA synthetase by deacetylation of active lysine. Science 298, 2390 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Buckley, B. M. & Williamson, D. H. Origins of blood acetate in the rat. Biochem. J. 166, 539–545 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fujino, T., Kondo, J., Ishikawa, M., Morikawa, K. & Yamamoto, T. Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J. Biol. Chem. 276, 11420–11426 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Michishita, E., Park, J. Y., Burneskis, J. M., Barrett, J. C. & Horikawa, I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623–4635 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ford, E., Voit, R., Liszt, G., Grummt, I. & Guarente, L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20, 1075–1081 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Muth, V., Nadaud, S., Grummt, I. & Voit, R. Acetylation of TAFI68, a subunit of TIF-IB/SLI, activates RNA polymerase I transcription. EMBO J. 20, 1353–1362 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005).

    Article  PubMed  Google Scholar 

  58. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genet. 34, 267–273 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Patti, M. E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl Acad. Sci. USA 100, 8466–8471 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423, 550–555 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Lin, J. et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1β coactivation of SREBP. Cell 120, 261–273 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Wolfrum, C. & Stoffel, M. Coactivation of Foxa2 through Pgc-1β promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab. 3, 99–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Wolfrum, C., Asilmaz, E., Luca, E., Friedman, J. & Stoffel, M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 432, 1027–1032 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Kahn, B. K., Alquier, T., Carling, D. & Hardie, D. G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Hardie, D. G., Scott, J. W., Pan, D. A. & Hudson, E. R. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546, 113–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRADα/β and Mo25α/β are upstream kinases in the AMP-activated protein kinase cascade. J.Biol. 2, 1–16 (2003).

    Article  Google Scholar 

  67. Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329–3335 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Birnbaum, M. J. Activating AMP-activated protein kinase without AMP. Mol. Cell 19, 289–296 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Brownsey, R. W., Boone, A. N., Elliott, J. E., Kulpa, J. E. & Lee, W. M. Regulation of acetyl-CoA carboxylase. Biochem. Soc. Trans. 34, 223–227 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Koo, S.-H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109–1114 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Canettieri, G. et al. Dual role of the coactivator TORC2 in modulating hepatic glucose output and insulin signaling. Cell Metab. 2, 331–338 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bauer, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  ADS  Google Scholar 

  76. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1–14 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The author apologizes for the many studies and references that could not be included because of space limitations. Work from the author's laboratory was supported by the NIH.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Leonard Guarente is a founder of Elixir Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guarente, L. Sirtuins as potential targets for metabolic syndrome. Nature 444, 868–874 (2006). https://doi.org/10.1038/nature05486

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05486

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing