Nature 442, 676-679 (10 August 2006) | doi:10.1038/nature05039; Received 2 January 2006; Accepted 30 June 2006

The dynamics of melt and shear localization in partially molten aggregates

Richard F. Katz1, Marc Spiegelman1,2 & Benjamin Holtzman1

  1. Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA
  2. Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA

Correspondence to: Richard F. Katz1 Correspondence and requests for materials should be addressed to R.F.K. (Email: katz@ldeo.columbia.edu).

The volcanoes that lie along the Earth's tectonic boundaries are fed by melt generated in the mantle. How this melt is extracted and focused to the volcanoes, however, remains an unresolved question. Here we present new theoretical results with implications for melt focusing beneath mid-ocean ridges. By modelling laboratory experiments1, 2, we test a formulation for magma dynamics and provide an explanation for localized bands of high-porosity and concentrated shear deformation observed in experiments. These bands emerge and persist at 15°–25° to the plane of shear. Past theoretical work on this system predicted the emergence of melt bands3, 4 but at an angle inconsistent with experiments. Our results suggest that the observed band angle results from a balance of porosity-weakening and strain-rate-weakening deformation mechanisms. Lower band angles are predicted for greater strain-rate weakening. From these lower band angles, we estimate the orientation of melt bands beneath mid-ocean ridges and show that they may enhance magma focusing toward the ridge axis.


These links to content published by NPG are automatically generated.


Earth sciences: Origin of mantle turbulence

Nature News and Views (01 Aug 1985)

Melt pathways in the mantle

Nature News and Views (29 Jun 1995)

See all 11 matches for News And Views