Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An excitable gene regulatory circuit induces transient cellular differentiation

Abstract

Certain types of cellular differentiation are probabilistic and transient1,2,3. In such systems individual cells can switch to an alternative state and, after some time, switch back again. In Bacillus subtilis, competence is an example of such a transiently differentiated state associated with the capability for DNA uptake from the environment. Individual genes and proteins underlying differentiation into the competent state have been identified4,5, but it has been unclear how these genes interact dynamically in individual cells to control both spontaneous entry into competence and return to vegetative growth. Here we show that this behaviour can be understood in terms of excitability in the underlying genetic circuit. Using quantitative fluorescence time-lapse microscopy, we directly observed the activities of multiple circuit components simultaneously in individual cells, and analysed the resulting data in terms of a mathematical model. We find that an excitable core module containing positive and negative feedback loops can explain both entry into, and exit from, the competent state. We further tested this model by analysing initiation in sister cells, and by re-engineering the gene circuit to specifically block exit. Excitable dynamics driven by noise naturally generate stochastic and transient responses6, thereby providing an ideal mechanism for competence regulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stress response in B. subtilis and the core competence circuit.
Figure 2: Activities of P comK and P comG promoters are highly correlated during competence.
Figure 3: Promoter activities of P comS and P comG are anti-correlated during competence.
Figure 4: Modelling of the core competence network reveals an excitable system.
Figure 5: Competence lock through feedback bypass.

References

  1. Dupin, E., Real, C., Glavieux-Pardanaud, C., Vaigot, P. & Le Douarin, N. M. Reversal of developmental restrictions in neural crest lineages: transition from Schwann cells to glial-melanocytic precursors in vitro. Proc. Natl Acad. Sci. USA 100, 5229–5233 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee, E. J., Russell, T., Hurley, L. & Jameson, J. L. Pituitary transcription factor-1 induces transient differentiation of adult hepatic stem cells into prolactin-producing cells in vivo. Mol. Endocrinol. 19, 964–971 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Meeks, J. C., Campbell, E. L., Summers, M. L. & Wong, F. C. Cellular differentiation in the cyanobacterium Nostoc punctiforme. Arch. Microbiol. 178, 395–403 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Grossman, A. D. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu. Rev. Genet. 29, 477–508 (1995)

    Article  CAS  PubMed  Google Scholar 

  5. Hamoen, L. W., Venema, G. & Kuipers, O. P. Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149, 9–17 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. Lindner, B., Garcia-Ojalvo, J., Neiman, A. & Schimansky-Geier, L. Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004)

    Article  ADS  Google Scholar 

  7. Hahn, J., Kong, L. & Dubnau, D. The regulation of competence transcription factor synthesis constitutes a critical control point in the regulation of competence in Bacillus subtilis. J. Bacteriol. 176, 5753–5761 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hahn, J., Luttinger, A. & Dubnau, D. Regulatory inputs for the synthesis of ComK, the competence transcription factor of Bacillus subtilis. Mol. Microbiol. 21, 763–775 (1996)

    Article  CAS  PubMed  Google Scholar 

  9. van Sinderen, D. et al. comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol. Microbiol. 15, 455–462 (1995)

    Article  CAS  PubMed  Google Scholar 

  10. van Sinderen, D. & Venema, G. comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J. Bacteriol. 176, 5762–5770 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maamar, H. & Dubnau, D. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol. Microbiol. 56, 615–624 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. Smits, W. K. et al. Stripping Bacillus: ComK auto-stimulation is responsible for the bistable response in competence development. Mol. Microbiol. 56, 604–614 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Turgay, K., Hahn, J., Burghoorn, J. & Dubnau, D. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J. 17, 6730–6738 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ogura, M., Liu, L., Lacelle, M., Nakano, M. M. & Zuber, P. Mutational analysis of ComS: evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis. Mol. Microbiol. 32, 799–812 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Haijema, B. J., Hahn, J., Haynes, J. & Dubnau, D. A. ComGA-dependent checkpoint limits growth during the escape from competence. Mol. Microbiol. 40, 52–64 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Serror, P. & Sonenshein, A. L. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J. Bacteriol. 178, 5910–5915 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakano, M. M. & Zuber, P. The primary role of comA in establishment of the competent state in Bacillus subtilis is to activate expression of srfA. J. Bacteriol. 173, 7269–7274 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hahn, J. & Dubnau, D. Growth stage signal transduction and the requirements for srfA induction in development of competence. J. Bacteriol. 173, 7275–7282 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl Acad. Sci. USA 100, 7714–7719 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiong, W. & Ferrell, J. E. Jr. A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature 426, 460–465 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Pomerening, J. R., Kim, S. Y. & Ferrell, J. E. Jr. Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell 122, 565–578 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. Lahav, G. et al. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nature Genet. 36, 147–150 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. Hardin, P. E. The circadian timekeeping system of Drosophila. Curr. Biol. 15, R714–R722 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. Vilar, J. M., Kueh, H. Y., Barkai, N. & Leibler, S. Mechanisms of noise-resistance in genetic oscillators. Proc. Natl Acad. Sci. USA 99, 5988–5992 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Keener, J. & Sneyd, J. Mathematical Physiology (Springer, New York, 1998)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank U. Alon, D. Dubnau, J. Dworkin, A. Eldar, J. Ferrell, R. Kishony, B. Lazazzera, R. Losick, A. Raj, B. Shraiman, D. Sprinzak, M. Surette and members of the laboratory for comments. G.M.S. is supported by the Caltech Center for Biological Circuit Design. J.G.-O. acknowledges financial support from the Generalitat de Catalunya and the Ministerio de Educacion y Ciencia (Spain). M.B.E. acknowledges support from the Searle Scholars Program and the Burroughs Wellcome Fund CASI program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Elowitz.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains the Supplementary Methods, Supplementary Discussion and Supplementary Figures The discussion concerns the analysis of the dynamical model and of competence excursions in sister cells and additional figures showing experimental data on growth rate and media comparison. (PDF 1678 kb)

Supplementary Movie 1

Movie of a B. subtilis microcolony under nutrient limitation conditions, showing PcomK and PcomG activities in blue and red colors, respectively. Simultaneous activation of comK and comG during competence results in a magenta color in the only cell of the microcolony that becomes competent. (MOV 2918 kb)

Supplementary Movie 2

Movie of a B. subtilis microcolony under nutrient limitation conditions, showing PcomG and PcomS activities in red and green colors, respectively. comS is expressed in all cells, but only one becomes competent. The two promoter activities are negatively correlated during competence. (MOV 3175 kb)

Supplementary Movie 3

Movie of a microcolony of FeBy B. subtilis cells incorporating a feedback bypass, under nutrient limitation conditions. PcomG and PcomS activities are shown in red and green colors, respectively. Competence is locked on due to the feedback bypass. (MOV 2540 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Süel, G., Garcia-Ojalvo, J., Liberman, L. et al. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440, 545–550 (2006). https://doi.org/10.1038/nature04588

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04588

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing