Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chemically tailorable colloidal particles from infinite coordination polymers

Abstract

Micrometre- and nanometre-sized particles play important roles in many applications, including catalysis1, optics2,3, biosensing4,5,6,7,8 and data storage9. Organic particles10 are usually prepared through polymerization of suitable monomers11 or precipitation methods12. In the case of inorganic materials, particle fabrication tends to involve the reduction of a metal salt13, or the controlled mixing of salt solutions supplying a metal cation and an elemental anion (for example, S2-, Se2-, O2-)14, respectively; in some instances, these methods even afford direct control over the shape of the particles produced14,15,16,17. Another class of materials are metal-organic coordination polymers18,19,20,21,22,23, which are based on metal ions coordinated by polydentate organic ligands and explored for potential use in catalysis18, gas storage19,20, nonlinear optics21 and molecular recognition and separations22,23. In a subset of these materials, the use of organometallic complexes as ligands (so-called metalloligands) provides an additional level of tailorability, but these materials have so far not yet been fashioned into nano- or microparticles. Here we show that simple addition of an initiation solvent to a precursor solution of metal ions and metalloligands results in the spontaneous and fully reversible formation of a new class of metal–metalloligand particles. We observe initial formation of particles with diameters of a few hundred nanometres, which then coalesce and anneal into uniform and smooth microparticles. The ease with which these particles can be fabricated, and the ability to tailor their chemical and physical properties through the choice of metal and organic ligand used, should facilitate investigations of their scope for practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Preparation of particles 3a c.
Figure 2: Images of the spherical microparticles Zn–BMSB–Zn ( 3a).
Figure 3: SEM and optical microscopy images of example micro- and nanoparticles formed through the infinite coordination polymer strategy, and the proposed cluster-fusion growth mechanism.
Figure 4: Optical properties of 3a.

Similar content being viewed by others

References

  1. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Blanco, A. et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Cao, Y. C., Jin, R. & Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Bruchez, M. Jr, Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Taton, T. A., Mirkin, C. A. & Letsinger, R. L. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. & Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997)

    Article  CAS  Google Scholar 

  9. Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Horn, D. & Rieger, J. Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew. Chem. Int. Edn Engl. 40, 4331–4361 (2001)

    Article  Google Scholar 

  11. Roscoe, S. B., Fréchet, J. M. J., Walzer, J. F. & Dias, A. J. Polyolefin spheres from metallocenes supported on noninteracting polystyrene. Science 280, 270–273 (1998)

    Article  ADS  CAS  Google Scholar 

  12. Fu, H.-B. & Yao, J.-N. Size effects on the optical properties of organic nanoparticles. J. Am. Chem. Soc. 123, 1434–1439 (2001)

    Article  CAS  Google Scholar 

  13. Henglein, A. Reduction of Ag(CN)2- on silver and platinum colloidal nanoparticles. Langmuir 17, 2329–2333 (2001)

    Article  CAS  Google Scholar 

  14. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Chen, J., Herricks, T. & Xia, Y. Polyol synthesis of platinum nanostructures: control of morphology through the manipulation of reduction kinetics. Angew. Chem. Int. Edn Engl. 44, 2589–2592 (2005)

    Article  CAS  Google Scholar 

  16. Jin, R. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Jin, R. et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Seo, J. S. et al. A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404, 982–986 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Rosi, N. L. et al. Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Evans, O. R. & Lin, W. Crystal engineering of NLO materials based on metal-organic coordination networks. Acc. Chem. Res. 35, 511–522 (2002)

    Article  CAS  Google Scholar 

  22. Kosal, M. E., Chou, J.-H., Wilson, S. R. & Suslick, K. S. A functional zeolite analogue assembled from metalloporphyrins. Nature Mater. 1, 118–121 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Tabellion, F. M., Seidel, S. R., Arif, A. M. & Stang, P. J. Template and guest effects on the self-assembly of a neutral and homochiral helix. Angew. Chem. Int. Edn Engl. 40, 1529–1532 (2001)

    Article  CAS  Google Scholar 

  24. Splan, K. E. et al. Photophysical and energy-transfer properties of (salen)zinc complexes and supramolecular assemblies. Eur. J. Inorg. Chem., 2348–2351 (2003)

  25. Kilså, K. et al. Anchoring group and auxiliary ligand effects on the binding of ruthenium complexes to nanocrystalline TiO2 photoelectrodes. J. Phys. Chem. B 108, 15640–15651 (2004)

    Article  Google Scholar 

  26. Ruck, R. T. & Jacobsen, E. N. Asymmetric catalysis of hetero-ene reactions with tridentate Schiff base chromium(III) complexes. J. Am. Chem. Soc. 124, 2882–2883 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.A.M. acknowledges the US Air Force Office of Scientific Research, NIH, NSF and DARPA for supporting this research. We thank C. L. Stern for X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A. Mirkin.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods, Supplementary Equation, Supplementary Discussion, Supplementary Figures 1–11 and Supplementary Tables 1 and 2. (PDF 2563 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, M., Mirkin, C. Chemically tailorable colloidal particles from infinite coordination polymers. Nature 438, 651–654 (2005). https://doi.org/10.1038/nature04191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04191

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing