Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Potential impacts of a warming climate on water availability in snow-dominated regions

Abstract

All currently available climate models predict a near-surface warming trend under the influence of rising levels of greenhouse gases in the atmosphere. In addition to the direct effects on climate—for example, on the frequency of heatwaves—this increase in surface temperatures has important consequences for the hydrological cycle, particularly in regions where water supply is currently dominated by melting snow or ice. In a warmer world, less winter precipitation falls as snow and the melting of winter snow occurs earlier in spring. Even without any changes in precipitation intensity, both of these effects lead to a shift in peak river runoff to winter and early spring, away from summer and autumn when demand is highest. Where storage capacities are not sufficient, much of the winter runoff will immediately be lost to the oceans. With more than one-sixth of the Earth's population relying on glaciers and seasonal snow packs for their water supply, the consequences of these hydrological changes for future water availability—predicted with high confidence and already diagnosed in some regions—are likely to be severe.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Accumulated annual snowfall divided by annual runoff over the global land regions.
Figure 2: Trade-off between firm hydropower and stream-flow requirements.
Figure 3: Changes in the Qori Kalis Glacier, Quelccaya Ice Cap, Peru, between 1978 (a) and 2002 (b).

Similar content being viewed by others

References

  1. The International Panel for Climate Change (IPCC) Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) (Cambridge Univ. Press, Cambridge, UK, 2001)

    Google Scholar 

  2. Barnett, T. P. & Pennell, W. (eds) Impact of global warming on Western US water supplies. Clim. Change 62 (Spec. Vol.) (2004).

  3. Mote, P. W., Hamlet, A. F., Clark, M. P. & Lettenmaier, D. P. Declining mountain snow pack in western North America. Bull. Am. Met. Soc. 86, 39–49 (2005)

    Article  Google Scholar 

  4. Dettinger, M. D., Cayan, D. R., Meyer, M. K. & Jeton, A. E. Simulated hydrologic responses to climate variations and change in the Merced, Carson, and American River Basins, Sierra Nevada, California, 1900–2099. Clim. Change 62, 283–317 (2004)

    Article  Google Scholar 

  5. Hamlet, A. F., Mote, P. W., Clark, M. P. & Lettenmaier, D. P. Effects of temperature and precipitation variability on snow pack trends in the western U.S. J. Clim. (in the press)

  6. Douville, H. et al. Sensitivity of the hydrological cycle in increasing amounts of greenhouse gases and aerosols. Clim. Dyn. 20, 45–68 (2002)

    Article  Google Scholar 

  7. Giorgi, F., Whetton, P. H. & Jones, R. G. Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings. Geophys. Res. Lett. 28, 3317–3321 (2001)

    Article  ADS  Google Scholar 

  8. Giorgi, F. & Bi, X. Regional changes in surface climate interannual variability for the 21st century from ensembles of global model simulations. Geophys. Res. Lett. 32, L13701, doi:10.1029/2005GL023002 (2005)

    Article  ADS  Google Scholar 

  9. Ruiz-Barradas, A. & Nigam, S. IPCC's 20th century climate simulations: Varied representations of North American hydroclimate variability. J. Clim. (submitted)

  10. Dai, A. Precipitation characteristics of eighteen coupled models. J. Clim. (submitted)

  11. Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M. & Peterson, D. H. Changes in the onset of Spring in the Western United States. Bull. Am. Met. Soc. 82, 399–415 (2001)

    Article  Google Scholar 

  12. Stewart, I., Cayan, D. C. & Dettinger, M. D. Changes in snowmelt runoff timing in Western North America under a ‘business as usual’ climate change scenario. Clim. Change 62, 217–232 (2004)

    Article  Google Scholar 

  13. Nijssen, B., O'Donnell, G. M., Hamlet, A. F. & Lettenmaier, D. P. Hydrologic vulnerability of global rivers to climate change. Clim. Change 50, 143–175 (2001)

    Article  CAS  Google Scholar 

  14. Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 99(D17), 14415–14428 (1994)

    Article  ADS  Google Scholar 

  15. Vörösmarty, C. J. K. et al. The storage and aging of continental runoff in large reservoir systems of the world. Ambio 26, 210–219 (1997)

    Google Scholar 

  16. Vörösmarty, C. J. et al. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Change 39, 169–190 (2003)

    Article  ADS  Google Scholar 

  17. Adam, J. C., Clark, E. A., Lettenmaier, D. P. & Wood, E. F. Correction of global precipitation products for orographic effects. J. Clim. (in the press)

  18. Center for International Earth Science Information Network (CIESIN). Socioeconomic Data and Applications Center (SEDAC): Gridded Population of the World, Version 3 (Columbia University and Centro Internacional de Agricultura Tropical, Palisades, New York, 2004); available at http://beta.sedac.ciesin.columbia.edu/gpw

    Google Scholar 

  19. Peterson, T. C., Golubev, V. S. & Groisman, P. V. Evaporation losing its strength. Nature 377, 687–688 (1995)

    Article  ADS  CAS  Google Scholar 

  20. Chattopadhyay, N. & Hulme, M. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricult. Forest Meteorol. 87, 55–73 (1997)

    Article  ADS  Google Scholar 

  21. Thomas, A. Spatial and temporal characteristics of potential evapotranspiration trends over China. Int. J. Clim. 20, 381–396 (2000)

    Article  Google Scholar 

  22. Golubev, V. S. et al. Evaporation changes over the contiguous United States and the former USSR: a reassessment. Geophys. Res. Lett. 28(13), 2665–2668 (2001)

    Article  ADS  Google Scholar 

  23. Brutsaert, W. & Parlange, M. Hydrologic cycle explains the evaporation paradox. Nature 396, 30 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Lawrimore, J. H. & Peterson, T. C. Pan evaporation trends in dry and humid regions of the United States. J. Hydrometeorol. 1, 543–546 (2000)

    Article  ADS  Google Scholar 

  25. Hobbins, M. T. & Ramirez, J. A. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: paradoxical or complementary? Geophys. Res. Lett. 31, doi: 10.1029/2004GL019846 (2004)

  26. Walter, M. T., Wilks, D. S., Parlange, J.-Y. & Schneider, R. L. Increasing evapotranspiration from the conterminous United States. J. Hydrometeorol. 5, 405–408 (2004)

    Article  ADS  Google Scholar 

  27. Roderick, M. L. & Farquhar, G. D. The cause of decreased pan evaporation over the past 50 years. Science 298, 1410–1411 (2002)

    ADS  CAS  PubMed  Google Scholar 

  28. Ohmura, A. & Wild, M. Is the hydrological cycle accelerating? Science 298, 1345–1346 (2002)

    Article  CAS  Google Scholar 

  29. Wild, M., Ohmura, A. & Gilgen, H. On the consistency of trends in radiation and temperature records and implications for the global hydrological cycle. Geophys. Res. Lett. 31, doi: 10.1029/2003GL019188 (2004)

  30. International Panel for Climate Change. Climate Change 2001: Impacts, Adaptation and Vulnerability (eds McCarthy, J. J. et al.) (Cambridge Univ. Press, Cambridge, UK, 2001)

    Google Scholar 

  31. Barnett, T. P. et al. The effects of climate change on water resources in the West: Introduction and overview. Clim. Change 62, 1–11 (2004)

    Article  Google Scholar 

  32. Payne, J. T., Wood, A. W., Hamlet, A. F., Palmer, R. N. & Lettenmaier, D. P. Mitigating effects of climate change on the water resources of the Columbia River Basin. Clim. Change 62, 233–256 (2004)

    Article  Google Scholar 

  33. Middelkoop, H. et al. Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim. Change 49, 105–128 (2001)

    Article  CAS  Google Scholar 

  34. Gan, T. Y. Reducing vulnerability of water resources of Canadian prairies to potential droughts and possible climatic warming. Wat. Res. Manag. 14, 111–135 (2000)

    Article  Google Scholar 

  35. Burn, D. Hydrologic effects of climatic change in west-central Canada. J. Hydrol. 160, 53–70 (1994)

    Article  ADS  Google Scholar 

  36. de Loë, R., Kreutzwiser, R. & Moraru, L. Adaptation options for the near term: climate change and the Canadian water sector. Glob. Environ. Change 11, 231–245 (2001)

    Article  Google Scholar 

  37. Schwindler, D. W. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can. J. Fish. Aquat. Sci. 58, 18–29 (2001)

    Article  Google Scholar 

  38. Thompson, L. G. et al. Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Clim. Change 59, 137–155 (2003)

    Article  CAS  Google Scholar 

  39. Combes, S., Prentice, M. L., Hansen, L. & Rosentrater, L. Going, Going, Gone! Climate Change and Global Glacier Decline 1–6 (World Wildlife Fund Climate Change Programme, WWF Germany, Berlin, 2004)

    Google Scholar 

  40. Singh, P. & Bengtsson, L. Hydrological sensitivity of a large Himalayan basin to climate change. Hydrol. Process. 18, 2363–2385 (2004)

    Article  ADS  Google Scholar 

  41. Singh, P., Jain, S. K. & Kumar, N. Estimation of snow and glacier-melt contribution to the Chenab River, Western Himalaya. Mount. Res. Develop. 17(1), 49–56 (1997)

    Article  Google Scholar 

  42. Singh, P. & Jain, S. K. Snow and glacier melt in the Satluj River at Bhakdra Dam in the western Himalayan region. Hydrol. Sci. J. 47, 93–106 (2002)

    Article  Google Scholar 

  43. Gao, Q. & Shi, S. Water resources in the arid zone of northwest China. J. Desert Res. 12(4), 1–12 (1992)

    MathSciNet  Google Scholar 

  44. Hou, S. et al. Climatological significance of an ice core net-accumulation record at Mt. Qomolangma. Chin. Sci. Bull. 45, 256–261 (2000)

    Article  Google Scholar 

  45. Chinese Academy of Sciences. China Glacier Inventory (World Data Center for Glaciology and Geocryology, Lanzhou Institute of Glaciology and Geocryology, Lanzhou, 2004); available from NSIDC User Services (nsidc@nsidc.org)

    Google Scholar 

  46. Meier, M. & Dyurgerov, M. Deciphering complex changes in snow and ice. Science 297, 350–351 (2002)

    Article  CAS  Google Scholar 

  47. Singh, P. Effect of warmer climate on the depletion of snow covered area in the Satluj basin in the western Himalayan region. Hydrol. Sci. J. 48, 413–425 (2003)

    Article  Google Scholar 

  48. Singh, P. & Kumar, N. Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan river. J. Hydrol. 193, 316–350 (1997)

    Article  ADS  Google Scholar 

  49. Liniger, H., Weingarten, R. & Grosjean, M. Mountains of the World: Water Towers for the 21st Century 1–24 (Mountain Agenda, Center for Development and Environment, Institute of Geography, University of Bern, Bern, 1998)

    Google Scholar 

  50. Mark, B. G. & Seltzer, G. O. Tropical glacier melt water contribution to stream discharge: a case study in the Cordillera Blanca, Peru. J. Glaciol. 49, 271–281 (2003)

    Article  ADS  Google Scholar 

  51. Kaser, G., Georges, C., Juen, I. & Moelg, T. in Global Change and Mountain Regions: A State of Knowledge Overview (eds Huber, U. M., Bugmann, H. K. M. & Reasoner, M. A.) 185–196 (Springer, New York, 2005)

    Book  Google Scholar 

  52. Mark, B. G. & Seltzer, G. O. Evaluation of recent glacier recession in the Cordillera Blanca, Peru (AD 1962–1999): spatial distribution of mass loss and climatic forcing. Quat. Sci. Rev. (in the press)

  53. Francou, B., Vuille, M., Wagnon, P., Mendoza, J. & Sicart, J. E Tropical climate change recorded by a glacier in the central Andes during the last decades of the 20th century: Chacaltaya, Bolivia. J. Geophys. Res. 108, D54154, doi:10.1029/2002JD002959 (2003)

    Article  ADS  Google Scholar 

  54. Mark, B.G. & Seltzer, G.O. in Global Change and Mountain Regions: A State Of Knowledge Overview (eds Huber, U. M., Bugmann, H. K. M. & Reasoner, M. A.) 205–214 (Springer, New York, 2005).

  55. Vuille, M. & Bradley, R. S. Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys. Res. Lett. 27, 3885–3888 (2000)

    Article  ADS  Google Scholar 

  56. Vuille, M., Bradley, R. S., Werner, M. & Keimig, F. 20th century climate change in the tropical Andes: observations and model results. Clim. Change 59(1–2), 75–99 (2003)

    Article  Google Scholar 

  57. Kaufman, Y. J., Didier, T. & Olivier, B. A satellite view of aerosols in the climate system. Nature 419, 215–223 (2002)

    Article  ADS  CAS  Google Scholar 

  58. Ramanthan, V., Crutzen, P. J., Kiehl, J. T. & Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124 (2001)

    Article  ADS  Google Scholar 

  59. Kiehl, J. T., Schneider, T. L., Rasch, P. J. & Barth, M. C. Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version 3. J. Geophys. Res. 105, 1441–1457 (2000)

    Article  ADS  CAS  Google Scholar 

  60. Krishnan, R. & Ramanathan, V. Evidence of surface cooling from absorbing aerosols. Geophys. Res. Lett. 29, 54–56 (2002)

    Article  Google Scholar 

  61. Rosenfeld, D. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26, 3105–3108 (1999)

    Article  ADS  Google Scholar 

  62. Rosenfeld, D. Suppression of rain and snow by urban air pollution. Science 287, 1793–1796 (2000)

    Article  ADS  CAS  Google Scholar 

  63. Borys, R. D., Lowenthal, D. H., Cohn, S. A. & Brown, W. O. J. Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate. Geophys. Res. Lett. 30(10), 45-1–45-4 (2003)

    Article  Google Scholar 

  64. Givati, A. & Rosenfeld, D. Quantifying precipitation suppression due to air pollution. J. Appl. Met. 43, 1038–1056 (2004)

    Article  ADS  Google Scholar 

  65. Hansen, J. & Nazarenko, L. Soot climate forcing via snow and ice albedos. Proc. Natl Acad. Sci. USA 101, 423–428 (2004)

    Article  ADS  CAS  Google Scholar 

  66. Hansen, J. et al. Earth's energy imbalance: Confirmation and implications. Science 308, 1431–1435 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work is a contribution from IDAG, the International Detection and Attribution Group jointly supported by NOAA and DOE. The gross domestic product data set was developed by the Center for International Earth Science Information Network (CIESIN) at Columbia University, New York, with funding from the National Aeronautics and Space Administration. This manuscript was improved considerably through the suggestions of D. Pierce and A. Gershunov.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. P. Barnett or D. P. Lettenmaier.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett, T., Adam, J. & Lettenmaier, D. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005). https://doi.org/10.1038/nature04141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04141

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing