Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structures of complement component C3 provide insights into the function and evolution of immunity

Abstract

The mammalian complement system is a phylogenetically ancient cascade system that has a major role in innate and adaptive immunity. Activation of component C3 (1,641 residues) is central to the three complement pathways and results in inflammation and elimination of self and non-self targets. Here we present crystal structures of native C3 and its final major proteolytic fragment C3c. The structures reveal thirteen domains, nine of which were unpredicted, and suggest that the proteins of the α2-macroglobulin family evolved from a core of eight homologous domains. A double mechanism prevents hydrolysis of the thioester group, essential for covalent attachment of activated C3 to target surfaces. Marked conformational changes in the α-chain, including movement of a critical interaction site through a ring formed by the domains of the β-chain, indicate an unprecedented, conformation-dependent mechanism of activation, regulation and biological function of C3.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of human complement components C3 and C3c.
Figure 2: Differences in domain arrangements between C3 and C3c.
Figure 3: Domain organization of the α2M family deduced from the C3 structure.
Figure 4: Interactions of the thioester and the TED domain.
Figure 5: The α′NT region (residues 727–744) slips through the β-ring.

Similar content being viewed by others

References

  1. Carroll, M. C. The complement system in regulation of adaptive immunity. Nature Immunol. 5, 981–986 (2004)

    Article  CAS  Google Scholar 

  2. Walport, M. J. Complement. First of two parts. N. Engl. J. Med. 344, 1058–1066 (2001); Complement. Second of two parts. N. Engl. J. Med. 344, 1140–1144 (2001)

    Article  CAS  Google Scholar 

  3. Sunyer, J. O., Zarkadis, I. K. & Lambris, J. D. Complement diversity: a mechanism for generating immune diversity? Immunol. Today 19, 519–523 (1998)

    Article  CAS  Google Scholar 

  4. Levashina, E. A. et al. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104, 709–718 (2001)

    Article  CAS  Google Scholar 

  5. Budd, A., Blandin, S., Levashina, E. A. & Gibson, T. J. Bacterial α2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome? Genome Biol. 5, R38 (2004)

    Article  Google Scholar 

  6. Bokisch, V. A., Muller-Eberhard, H. J. & Cochrane, C. G. Isolation of a fragment (C3a) of the third component of human complement containing anaphylatoxin and chemotactic activity and description of an anaphylatoxin inactivator of human serum. J. Exp. Med. 129, 1109–1130 (1969)

    Article  CAS  Google Scholar 

  7. Tack, B. F., Harrison, R. A., Janatova, J., Thomas, M. L. & Prahl, J. W. Evidence for presence of an internal thiolester bond in third component of human complement. Proc. Natl Acad. Sci. USA 77, 5764–5768 (1980)

    Article  ADS  CAS  Google Scholar 

  8. Lambris, J. D. The multifunctional role of C3, the third component of complement. Immunol. Today 9, 387–393 (1988)

    Article  CAS  Google Scholar 

  9. Law, S. K., Lichtenberg, N. A. & Levine, R. P. Evidence for an ester linkage between the labile binding site of C3b and receptive surfaces. J. Immunol. 123, 1388–1394 (1979)

    CAS  PubMed  Google Scholar 

  10. Muller-Eberhard, H. J. & Gotze, O. C3 proactivator convertase and its mode of action. J. Exp. Med. 135, 1003–1008 (1972)

    Article  CAS  Google Scholar 

  11. Fishelson, Z., Pangburn, M. K. & Muller-Eberhard, H. J. Characterization of the initial C3 convertase of the alternative pathway of human complement. J. Immunol. 132, 1430–1434 (1984)

    CAS  PubMed  Google Scholar 

  12. Pangburn, M. K., Schreiber, R. D. & Muller-Eberhard, H. J. Human complement C3b inactivator: isolation, characterization, and demonstration of an absolute requirement for the serum protein β1H for cleavage of C3b and C4b in solution. J. Exp. Med. 146, 257–270 (1977)

    Article  CAS  Google Scholar 

  13. Ross, G. D., Lambris, J. D., Cain, J. A. & Newman, S. L. Generation of three different fragments of bound C3 with purified factor I or serum. I. Requirements for factor H vs CR1 cofactor activity. J. Immunol. 129, 2051–2060 (1982)

    CAS  PubMed  Google Scholar 

  14. Seya, T., Turner, J. R. & Atkinson, J. P. Purification and characterization of a membrane protein (gp45-70) that is a cofactor for cleavage of C3b and C4b. J. Exp. Med. 163, 837–855 (1986)

    Article  CAS  Google Scholar 

  15. Harrison, R. A. & Lachmann, P. J. Novel cleavage products of the third component of human complement. Mol. Immunol. 17, 219–228 (1980)

    Article  CAS  Google Scholar 

  16. Lachmann, P. J., Pangburn, M. K. & Oldroyd, R. G. Breakdown of C3 after complement activation. Identification of a new fragment C3g, using monoclonal antibodies. J. Exp. Med. 156, 205–216 (1982)

    Article  CAS  Google Scholar 

  17. Collaborative Computational Project, Number 4, The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  18. Nagar, B., Jones, R. G., Diefenbach, R. J., Isenman, D. E. & Rini, J. M. X-ray crystal structure of C3d: a C3 fragment and ligand for complement receptor 2. Science 280, 1277–1281 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Storoni, L. C., McCoy, A. J. & Read, R. J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D 60, 432–438 (2004)

    Article  Google Scholar 

  20. de Bruijn, M. H. & Fey, G. H. Human complement component C3: cDNA coding sequence and derived primary structure. Proc. Natl Acad. Sci. USA 82, 708–712 (1985)

    Article  ADS  CAS  Google Scholar 

  21. Huber, R., Scholze, H., Paques, E. P. & Deisenhofer, J. Crystal structure analysis and molecular model of human C3a anaphylatoxin. Hoppe-Seyler's Z. Physiol. Chem. 361, 1389–1399 (1980)

    Article  CAS  Google Scholar 

  22. Jenner, L., Husted, L., Thirup, S., Sottrup-Jensen, L. & Nyborg, J. Crystal structure of the receptor-binding domain of α2-macroglobulin. Structure 6, 595–604 (1998)

    Article  CAS  Google Scholar 

  23. Thomas, M. L., Janatova, J., Gray, W. R. & Tack, B. F. Third component of human complement: localization of the internal thiolester bond. Proc. Natl Acad. Sci. USA 79, 1054–1058 (1982)

    Article  ADS  CAS  Google Scholar 

  24. Bramham, J. et al. Functional insights from the structure of the multifunctional C345C domain of C5 of complement. J. Biol. Chem. 280, 10636–10645 (2005)

    Article  CAS  Google Scholar 

  25. Taniguchi-Sidle, A. & Isenman, D. E. Interactions of human complement component C3 with factor B and with complement receptors type 1 (CR1, CD35) and type 3 (CR3, CD11b/CD18) involve an acidic sequence at the N-terminus of C3 alpha′-chain. J. Immunol. 153, 5285–5302 (1994)

    CAS  PubMed  Google Scholar 

  26. Sottrup-Jensen, L., Sand, O., Kristensen, L. & Fey, G. H. The α-macroglobulin bait region. Sequence diversity and localization of cleavage sites for proteinases in five mammalian α-macroglobulins. J. Biol. Chem. 264, 15781–15789 (1989)

    CAS  PubMed  Google Scholar 

  27. Lagueux, M., Perrodou, E., Levashina, E. A., Capovilla, M. & Hoffmann, J. A. Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila.. Proc. Natl Acad. Sci. USA 97, 11427–11432 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Ishii, N., Wadsworth, W. G., Stern, B. D., Culotti, J. G. & Hedgecock, E. M. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 9, 873–881 (1992)

    Article  CAS  Google Scholar 

  29. Sahu, A. & Lambris, J. D. Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol. Rev. 180, 35–48 (2001)

    Article  CAS  Google Scholar 

  30. Pangburn, M. K., Schreiber, R. D. & Muller-Eberhard, H. J. Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J. Exp. Med. 154, 856–867 (1981)

    Article  CAS  Google Scholar 

  31. Isenman, D. E., Kells, D. I., Cooper, N. R., Muller-Eberhard, H. J. & Pangburn, M. K. Nucleophilic modification of human complement protein C3: correlation of conformational changes with acquisition of C3b-like functional properties. Biochemistry 20, 4458–4467 (1981)

    Article  CAS  Google Scholar 

  32. Pangburn, M. K. Spontaneous reformation of the intramolecular thioester in complement protein C3 and low temperature capture of a conformational intermediate capable of reformation. J. Biol. Chem. 267, 8584–8590 (1992)

    CAS  PubMed  Google Scholar 

  33. Law, S. K. & Dodds, A. W. The internal thioester and the covalent binding properties of the complement proteins C3 and C4. Protein Sci. 6, 263–274 (1997)

    Article  CAS  Google Scholar 

  34. Gadjeva, M. et al. The covalent binding reaction of complement component C3. J. Immunol. 161, 985–990 (1998)

    CAS  PubMed  Google Scholar 

  35. Dodds, A. W., Ren, X. D., Willis, A. C. & Law, S. K. The reaction mechanism of the internal thioester in the human complement component C4. Nature 379, 177–179 (1996)

    Article  ADS  CAS  Google Scholar 

  36. van den Elsen, J. M. et al. X-ray crystal structure of the C4d fragment of human complement component C4. J. Mol. Biol. 322, 1103–1115 (2002)

    Article  CAS  Google Scholar 

  37. Qazi, U., Gettins, P. G. & Stoops, J. K. On the structural changes of native human α2-macroglobulin upon proteinase entrapment. Three-dimensional structure of the half-transformed molecule. J. Biol. Chem. 273, 8987–8993 (1998)

    Article  CAS  Google Scholar 

  38. Daoudaki, M. E., Becherer, J. D. & Lambris, J. D. A 34-amino acid peptide of the third component of complement mediates properdin binding. J. Immunol. 140, 1577–1580 (1988)

    CAS  PubMed  Google Scholar 

  39. Winters, M. S., Spellman, D. S. & Lambris, J. D. Solvent accessibility of native and hydrolyzed human complement protein 3 analyzed by hydrogen/deuterium exchange and mass spectrometry. J. Immunol. 174, 3469–3474 (2005)

    Article  CAS  Google Scholar 

  40. Oran, A. E. & Isenman, D. E. Identification of residues within the 727–767 segment of human complement component C3 important for its interaction with factor H and with complement receptor 1 (CR1, CD35). J. Biol. Chem. 274, 5120–5130 (1999)

    Article  CAS  Google Scholar 

  41. Lambris, J. D. et al. Dissection of CR1, factor H, membrane cofactor protein, and factor B binding and functional sites in the third complement component. J. Immunol. 156, 4821–4832 (1996)

    CAS  PubMed  Google Scholar 

  42. Hammer, C. H., Wirtz, G. H., Renfer, L., Gresham, H. D. & Tack, B. F. Large scale isolation of functionally active components of the human complement system. J. Biol. Chem. 256, 3995–4006 (1981)

    CAS  PubMed  Google Scholar 

  43. Otwinowski, Z. & Minor, W. Processing X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  44. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993)

    Article  CAS  Google Scholar 

  45. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  Google Scholar 

  46. Kleywegt, G. J. & Jones, T. A. Software for handling macromolecular envelopes. Acta Crystallogr. D 55, 941–944 (1999)

    Article  CAS  Google Scholar 

  47. Perrakis, A., Morris, R. & Lamzin, V. S. Automated protein model building combined with iterative structure refinement. Nature Struct. Biol. 6, 458–463 (1999)

    Article  CAS  Google Scholar 

  48. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  49. Brunger, A. T. et al. Crystallography NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  50. Solomon, K. R., Sharma, P., Chan, M., Morrison, P. T. & Finberg, R. W. CD109 represents a novel branch of the α2-macroglobulin/complement gene family. Gene 327, 171–183 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the help of beamline scientists of the EMBL/ESRF and in particular R. B. G. Ravelli for help in data collection, and A. Perrakis and D. Egan for help and use of their crystallization robots. We thank A. T. Brunger, M. Bowen, B. DeLaBarre, J. D. Lambris, C. W. Vogel, D. Fritzinger, T. Springer and T. K. Sixma for critically reading the manuscript. This work was supported by a ‘Pionier’ programme grant (P.G.) of the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (NWO-CW), the Dutch Kidney Foundation (A.R.), the Swedish Research Council (B.N.) and faculty grants at the University of Kalmar (K.N.-E.). A.R. does not support the evolutionary implications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piet Gros.

Ethics declarations

Competing interests

Co-ordinates and structure factors have been deposited in the Protein Data Bank under accession numbers 2A73 (C3) and 2A74 (C3c). Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure Legends

Figure captions for Supplementary Tables S1 and S2 and Supplementary Figures S1 to S6. (DOC 115 kb)

Supplementary Table S1

Diffraction data, structure solution and refinement statistics for C3c and C3. (PDF 51 kb)

Supplementary Table S2

Domain rotation and translation between C3 and C3c. (PDF 34 kb)

Supplementary Figure S1

Electron density of the α′NT region in C3c and the thioester in C3. (PDF 776 kb)

Supplementary Figure S2

Stereo representations of C3 and C3c. Secondary structure assignments and alignment of C3 with α2M family members. Structure-based sequence alignment of the eight MG domains of C3. Superposition of the eight MG domains of C3. (PDF 1190 kb)

Supplementary Figure S3

Structures of individual domains of C3 and C3c superposed. (PDF 1968 kb)

Supplementary Figure S4

Electrostatic surface potential of C3 and C3c. (PDF 217 kb)

Supplementary Figure S5

Sequence conservation of the β bridge, 205YVLP208, and the hinge 745FPES748. (PDF 387 kb)

Supplementary Figure S6

Conglutinin binding site and factor I cleavage sites in the CUB domain. (PDF 813 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, B., Huizinga, E., Raaijmakers, H. et al. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437, 505–511 (2005). https://doi.org/10.1038/nature04005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04005

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing