Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A photonic quantum information interface

Abstract

Quantum communication requires the transfer of quantum states1, or quantum bits of information (qubits), from one place to another. From a fundamental perspective, this allows the distribution of entanglement and the demonstration of quantum non-locality over significant distances2,3,4,5,6. Within the context of applications, quantum cryptography offers a provably secure way to establish a confidential key between distant partners7. Photons represent the natural flying qubit carriers for quantum communication, and the presence of telecommunications optical fibres makes the wavelengths of 1,310 nm and 1,550 nm particularly suitable for distribution over long distances. However, qubits encoded into alkaline atoms that absorb and emit at wavelengths around 800 nm have been considered for the storage and processing of quantum information8,9. Hence, future quantum information networks made of telecommunications channels and alkaline memories will require interfaces that enable qubit transfers between these useful wavelengths, while preserving quantum coherence and entanglement9,10,11. Here we report a demonstration of qubit transfer between photons of wavelength 1,310 nm and 710 nm. The mechanism is a nonlinear up-conversion process, with a success probability of greater than 5 per cent. In the event of a successful qubit transfer, we observe strong two-photon interference between the 710 nm photon and a third photon at 1,550 nm, initially entangled with the 1,310 nm photon, although they never directly interacted. The corresponding fidelity is higher than 98 per cent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the experiment concept.
Figure 2: Experimental Franson-type set-up used for the creation and analysis of energy-time entangled pairs of photons.
Figure 3: Experimental set-up for the coherent transfer of quantum entanglement.

Similar content being viewed by others

References

  1. Tittel, W. & Weihs, G. Photonic entanglement for fundamental tests and quantum communication. Quant. Inform. Comput. 1, 3–56 (2001)

    Google Scholar 

  2. Tittel, W., Brendel, J., Zbinden, H. & Gisin, N. Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Marcikic, I. et al. Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell's inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. Resch, K. J. et al. Distributing entanglement and single photons through an intra-city, free-space quantum channel. Opt. Express 13, 202–209 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Peng, C.-Z. et al. Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km. Phys. Rev. Lett. 94, 150501 (2005)

    Article  ADS  Google Scholar 

  7. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  8. Blinov, B. B., Moehring, D. L., Duan, L.-M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Lloyd, S., Shahriar, M. S., Shapiro, J. H. & Hemmer, P. R. Long distance, unconditional teleportation of atomic states via complete Bell state measurements. Phys. Rev. Lett. 87, 167903 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Huang, J. & Kumar, P. Observation of quantum frequency conversion. Phys. Rev. Lett. 68, 2153–2156 (1992)

    Article  ADS  CAS  Google Scholar 

  11. Mataloni, P., Giorgi, G. & De Martini, F. Frequency hopping in quantum interferometry. Fortschr. Phys. 51, 435–441 (2003)

    Article  CAS  Google Scholar 

  12. Rowe, M. A. et al. Experimental violation of a Bell's inequality with efficient detection. Nature 409, 791–794 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Schmidt-Kaler, F. et al. Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Mandel, O. et al. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937–940 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimental long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurásek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein-Podolski-Rosen-Bohm Gedankenexperiment: a new violation of Bell's inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

    Article  ADS  Google Scholar 

  19. Kwiat, P. G., Waks, E., White, A. G., Appelbaum, I. & Eberhard, P. H. Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Kuklewicz, C. E., Fiorentino, M., Messin, G., Wong, F. N. C. & Shapiro, J. H. High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter. Phys. Rev. A 69, 013807 (2004)

    Article  ADS  Google Scholar 

  21. Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  CAS  Google Scholar 

  22. Tanzilli, S. et al. PPLN waveguide for quantum communication. Eur. Phys. J. D 18, 155–160 (2002)

    ADS  CAS  Google Scholar 

  23. Banaszek, K., U'Ren, A. B. & Walmsley, I. A. Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides. Opt. Lett. 26, 1367–1369 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Aspect, A. Bell's inequality test: more ideal than ever. Nature 398, 189–190 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Franson, J. D. Bell inequality for position and time. Phys. Rev. Lett. 62, 2205–2208 (1989)

    Article  ADS  CAS  Google Scholar 

  26. Roussev, R. V., Langrock, C., Kurz, J. R. & Fejer, M. M. Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths. Opt. Lett. 29, 1518–1520 (2004)

    Article  ADS  Google Scholar 

  27. Albota, M. A. & Wong, F. N. C. Efficient single-photon counting at 1.55 µm by means of frequency upconversion. Opt. Lett. 29, 1449–1451 (2004)

    Article  ADS  Google Scholar 

  28. Vandevender, A. P. & Kwiat, P. J. High efficiency single photon detection via frequency up-conversion. J. Mod. Opt. 51, 1433–1445 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Marcikic, I., De Riedmatten, H., Tittel, W., Zbinden, H. & Gisin, N. Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.B. Ostrowsky for discussions. Financial support by the Swiss Nation Center for Quantum Photonics and the European IST project RamboQ is acknowledged. S.T. acknowledges financial support from the European Science Foundation programme ‘Quantum Information Theory and Quantum Computation’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tanzilli.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanzilli, S., Tittel, W., Halder, M. et al. A photonic quantum information interface. Nature 437, 116–120 (2005). https://doi.org/10.1038/nature04009

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04009

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing