Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communications Arising
  • Published:

Water behaviour

Glass transition in hyperquenched water? (reply)

Abstract

The alternating support for and denial of a glass transition for amorphous water at 136 K has resumed after a hiatus of 20 years, during which it seemed secure. We revived the alternative interpretation1 by looking again at the calorimetric signal that previously provided the most direct evidence for the glass transition2,3 — and now Kohl et al.4 present new data to support the original interpretation. We show here that their results are also consistent with our conclusions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results analogous to those in Fig. 1 (top curves) of Kohl et al.4, but for non-crystallizing basaltic hyperquenched glass.

Similar content being viewed by others

References

  1. Yue, Y. -Z. & Angell, C. A. Nature 427, 717–720 (2004).

    Article  ADS  CAS  Google Scholar 

  2. Johari, G. P., Hallbrucker, A. & Mayer, E. Nature 330, 552–553 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Hallbrucker, A., Mayer, E. & Johari, G. P. J. Phys. Chem. 93, 4986–4990 (1989).

    Article  CAS  Google Scholar 

  4. Kohl, I., Bachmann, L., Mayer, E., Hallbrucker, A. & Loerting, T. Nature 435, doi: 10.1038/nature03707 (2005).

  5. Ito, K., Moynihan, C. T. & Angell, C. A. Nature 398, 492–495 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Starr, F. W., Angell, C. A. & Stanley, H. E. Physica A 323, 51–66 (2003).

    Article  ADS  CAS  Google Scholar 

  7. Faraone, A., Liu, L., Mou, C. -Y., Wen, C. -W. & Chen, S. -H. J. Chem. Phys. 121, 10843–10846 (2004).

    Article  ADS  CAS  Google Scholar 

  8. Maruyama, S., Wakabayashi, K. & Oguni, M. Am. Inst. Phys. Conf. Proc. 473, 675–676 (2004).

    ADS  Google Scholar 

  9. Angell, C. A. et al. J. Phys. Condens. Matter 15, S1051–S1068 (2003).

    Article  CAS  Google Scholar 

  10. Johari, G. P. J. Chem. Phys. 119, 2935–2937 (2003).

    Article  ADS  CAS  Google Scholar 

  11. Velikov, V., Borick, S. & Angell, C. A. Science 294, 2335–2338 (2001).

    Article  ADS  CAS  Google Scholar 

  12. Moynihan, C. T., Easteal, A. J., DeBolt, M. A. & Tucker, J. J. Am. Ceram. Soc. 59, 12–16 (1976).

    Article  CAS  Google Scholar 

  13. Boehm, L., Ingram, M. D. & Angell, C. A. J. Non-Cryst. Solids 44, 305–313 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Mishima, O. J. Chem. Phys. 121, 3161–3164 (2004).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Austen Angell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, Y., Angell, C. Glass transition in hyperquenched water? (reply). Nature 435, E1–E2 (2005). https://doi.org/10.1038/nature03708

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03708

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing