Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mediation of pathogen resistance by exudation of antimicrobials from roots

A Retraction to this article was published on 02 March 2011

Abstract

Most plant species are resistant to most potential pathogens. It is not known why most plant–microbe interactions do not lead to disease, although recent work indicates that this basic disease resistance is multi-factorial1,2. Here we show that the exudation of root-derived antimicrobial metabolites by Arabidopsis thaliana confers tissue-specific resistance to a wide range of bacterial pathogens. However, a Pseudomonas syringae strain that is both at least partly resistant to these compounds and capable of blocking their synthesis/exudation is able to infect the roots and cause disease. We also show that the ability of this P. syringae strain to block antimicrobial exudation is dependent on the type III secretory system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenicity of various P. syringae pathovars against A. thaliana.
Figure 2: Activated charcoal enhances virulence of non-host pathogens.
Figure 3: Kinetics of accumulation of a representative antimicrobial compound (butanoic acid) in Arabidopsis root exudates.

References

  1. Nishimura, M. & Somerville, S. Plant biology. Resisting attack. Science 295, 2032–2033 (2002)

    Article  CAS  Google Scholar 

  2. Thordal-Christensen, H. Fresh insights into processes of nonhost resistance. Curr. Opin. Plant Biol. 6, 351–357 (2003)

    Article  CAS  Google Scholar 

  3. Bais, H. P., Fall, R. & Vivanco, J. M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134, 307–319 (2004)

    Article  CAS  Google Scholar 

  4. Yu, G. L., Katagiri, F. & Ausubel, F. M. Arabidopsis mutations at the RPS2 locus result in loss of resistance to Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Mol. Plant Microbe Interact. 6, 434–443 (1993)

    Article  CAS  Google Scholar 

  5. Davis, K. R., Schott, E. & Ausubel, F. M. Virulence of selected phytopathogenic pseudomonads in Arabidopsis thaliana. Mol. Plant Microbe Interact. 4, 477–488 (1991)

    Article  CAS  Google Scholar 

  6. Dong, X., Mindrinos, M., Davis, K. R. & Ausubel, F. M. Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell 3, 61–72 (1991)

    Article  CAS  Google Scholar 

  7. Debener, T., Lehnackers, H., Arnold, M. & Dangl, J. L. Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate. Plant J. 1, 289–302 (1991)

    Article  Google Scholar 

  8. Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51 (2003)

    Article  CAS  Google Scholar 

  9. Walker, T. S., Bais, H. P., Halligan, K. M., Stermitz, F. R. & Vivanco, J. M. Metabolic profiling of root exudates of Arabidopsis thaliana. J. Agric. Food Chem. 51, 2548–2554 (2003)

    Article  CAS  Google Scholar 

  10. Callaway, R. M. & Aschehoug, E. T. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290, 521–523 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M. & Vivanco, J. M. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301, 1377–1380 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Nikaido, H. Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol. 1, 516–523 (1998)

    Article  CAS  Google Scholar 

  13. Galan, J. E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Roine, E. et al. Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc. Natl Acad. Sci. USA 94, 3459–3464 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Xiao, Y., Heu, S., Yi, J., Lu, Y. & Hutcheson, S. W. Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J. Bacteriol. 176, 1025–1036 (1994)

    Article  CAS  Google Scholar 

  16. Zwiesler-Vollick, J. et al. Identification of novel hrp-regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome. Mol. Microbiol. 45, 1207–1218 (2002)

    Article  CAS  Google Scholar 

  17. Bender, C. L., Alarcon-Chaidez, F. & Gross, D. C. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63, 266–292 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dixon, R. A. Natural products and plant disease resistance. Nature 411, 843–847 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Papadopoulou, K., Melton, R. E., Leggett, M., Daniels, M. J. & Osbourn, A. E. Compromised disease resistance in saponin-deficient plants. Proc. Natl Acad. Sci. USA 96, 12923–12928 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Haralampidis, K. et al. A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proc. Natl Acad. Sci. USA 98, 13431–13436 (2001)

    Article  ADS  CAS  Google Scholar 

  21. Reimmann, C. & VanEtten, H. D. Cloning and characterization of the PDA6–1 gene encoding a fungal cytochrome P-450 which detoxifies the phytoalexin pisatin from garden pea. Gene 146, 221–226 (1994)

    Article  CAS  Google Scholar 

  22. Bouarab, K., Melton, R., Peart, J., Baulcombe, D. & Osbourn, A. A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418, 889–892 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Sesma, A. & Osbourn, A. E. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431, 582–586 (2004)

    Article  ADS  CAS  Google Scholar 

  24. Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962)

    Article  CAS  Google Scholar 

  25. Whalen, M. C., Innes, R. W., Bent, A. F. & Staskawicz, B. J. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3, 49–59 (1991)

    Article  CAS  Google Scholar 

  26. Lindgren, P. B., Peet, R. C. & Panopoulos, N. J. Gene cluster of Pseudomonas syringae pv. ‘phaseolicola’ controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J. Bacteriol. 168, 512–522 (1986)

    Article  CAS  Google Scholar 

  27. Fillingham, A. J. et al. Avirulence genes from Pseudomonas syringae pathovars phaseolicola and pisi confer specificity towards both host and non-host species. Physiol. Mol. Plant Pathol. 40, 1–15 (1992)

    Article  Google Scholar 

  28. Rich, J. J., Hirano, S. S. & Willis, D. K. Pathovar-specific requirement for the Pseudomonas syringae lemA gene in disease lesion formation. Appl. Environ. Microbiol. 58, 1440–1446 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Brooks, D. M. et al. Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato DC3000. Mol. Plant Microbe Interact. 17, 162–174 (2004)

    Article  CAS  Google Scholar 

  30. National Committee for Clinical Laboratory Standards (NCCLS). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard M7–A6 5th edn (NCCLS, Wayne, Pennsylvania, USA, 2003)

    Google Scholar 

Download references

Acknowledgements

We thank W. Songnuan and J. Dangl for critical reading of the manuscript, and E. Wortman-Wunder for editing suggestions. This work was supported by the Colorado State University Agricultural Experiment Station (J.M.V.) and by NIH and NSF grants to F.M.A. J.M.V. is a NSF-CAREER Faculty Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frederick M. Ausubel or Jorge M. Vivanco.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Methods

This file contains additional details of methods and materials used in the study. (DOC 86 kb)

Supplementary Figures S1-S8

This file contains Supplementary Figures S1-S8 (PPT 34891 kb)

Supplementary Legends

Legends to accompany the above Supplementary Figures. (DOC 53 kb)

Supplementary Table S1

Ten secondary metabolites detected in the root exudates of A. thaliana depicted as marker compounds. (PPT 170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bais, H., Prithiviraj, B., Jha, A. et al. Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434, 217–221 (2005). https://doi.org/10.1038/nature03356

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03356

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing