Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A theoretical look at the direct detection of giant planets outside the Solar System

Abstract

Astronomy is at times a science of unexpected discovery. When it is, and if we are lucky, new intellectual territories emerge to challenge our views of the cosmos. The recent indirect detections using high-precision Doppler spectroscopy of more than 100 giant planets orbiting more than 100 nearby stars is an example of such rare serendipity. What has been learned has shaken out preconceptions, for none of the planetary systems discovered so far is like our own. The key to unlocking a planet's chemical, structural, and evolutionary secrets, however, is the direct detection of the planet's light. Because there have been as yet no confirmed detections, a theoretical analysis of such a planet's atmosphere is necessary for guiding our search.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Profiles of atmospheric temperature (in Kelvin) versus the logarithm base ten of the pressure (in bars) for a family of irradiated 1-MJ EGPs around a G2V star as a function of orbital distance.
Figure 2: Planet to star flux ratios versus wavelength from 0.5 to 30 µm for a 1-MJ EGP with an age of 5 Gyr orbiting a G2V main-sequence star similar to the Sun.
Figure 3: The logarithm of the absolute flux in milliJanskays (≡ 10-26 ergs cm-2 s-1 Hz-1) at 10 pc for a ‘Class V’ roaster versus wavelength from 0.4 to 5 µm.
Figure 4: Keplerian orbital elements.
Figure 5: A comparison of the planet/star contrast ratios (and contrast magnitudes = -2.5 log(f)) versus angular separation (in arcsec) achievable for some proposed planet imaging systems.

Similar content being viewed by others

References

  1. Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355 (1995)

    Article  ADS  CAS  Google Scholar 

  2. Marcy, G. W. & Butler, R. P. A planetary companion to 70 Virginis. Astrophys. J. 464, L147–L151 (1996)

    Article  ADS  Google Scholar 

  3. Schneider, J. Extrasolar Planet Encyclopaediahttp://www.obspm.fr/encycl/encycl.html〉 (2004).

  4. MacArthur, B. et al. Detection of a Neptune-mass planet in the ρ1 Cancri system using the Hobby-Eberly Telescope (55 Cancri e). Astrophys. J. (submitted)

  5. Konacki, M., Torres, G., Jha, S. & Sasselov, D. An extrasolar planet that transits the disk of its parent star. Nature 421, 507–509 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Torres, G., Konacki, M., Sasselov, D. & Jha, S. New data and improved parameters for the extrasolar transiting planet OGLE-TR-56b. Astrophys. J. 609, 1071–1075 (2003)

    Article  ADS  Google Scholar 

  7. Sasselov, D. The new transiting planet OGLE-TR-56b: orbit and atmosphere. Astrophys. J. 596, 1327–1331 (2003)

    Article  ADS  Google Scholar 

  8. Henry, G., Marcy, G. W., Butler, R. P. & Vogt, S. S. A transiting “51 Peg-like” planet. Astrophys. J. 529, L41–L44 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Charbonneau, D., Brown, T. M., Latham, D. W. & Mayor, M. Detection of planetary transits across a Sun-like star. Astrophys. J. Lett. 529, L45–L48 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Brown, T. M., Charbonneau, D., Gilliland, R. L., Noyes, R. W. & Burrows, A. Hubble Space Telescope time-series photometry of the transiting planet of HD 209458. Astrophys. J. 552, 699–709 (2001)

    Article  ADS  Google Scholar 

  11. Bouchy, F. et al. Two new “very how Jupiters” among the OGLE transiting candidates. Astron. Astrophys. 421, L13–L16 (2004)

    Article  ADS  Google Scholar 

  12. Alonso, R. et al. TrES-1: The transiting planet of a bright K0V star. Astrophys. J. (in the press)

  13. Pont, F. et al. The “missing link”: A 4-day period transiting exoplanet around OGLE-TR-111. Astron. Astrophys. (2004) (in the press); preprint at http://arXiv.org/astro-ph/0408499

  14. Koch, D. et al. in Space Telescopes and Instruments V SPIE Conf. 3356, 599–607 (1998)

    Book  Google Scholar 

  15. Antonello, E. & Ruiz, S. M. The Corot mission. Mem. Soc. Astron. Ital. 73, 1241–1242 (2002)

    ADS  Google Scholar 

  16. Burrows, A., Sudarsky, D. & Hubbard, W. B. A theory for the radius of the transiting giant planet HD 209458b. Astrophys. J. 594, 545–551 (2003)

    Article  ADS  Google Scholar 

  17. Burrows, A., Hubeny, I., Hubbard, W. B. & Sudarsky, D. Theoretical radii of transiting giant planets: The case of OGLE-TR-56b. Astrophys. J. 610, L53–L56 (2004)

    Article  ADS  Google Scholar 

  18. Baraffe, I., Chabrier, G., Allard, F. & Hauschildt, P. H. Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. Astron. Astrophys. 402, 701–712 (2003)

    Article  ADS  Google Scholar 

  19. Charbonneau, D., Brown, T. M., Noyes, R. W. & Gilliland, R. L. Detection of an extrasolar planet atmosphere. Astrophys. J. 586, 377–384 (2002)

    Article  ADS  Google Scholar 

  20. Seager, S. & Sasselov, D. D. Theoretical transmission spectra during extrasolar giant planet transits. Astrophys. J. 537, 916–921 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Hubbard, W. B. et al. Theory of extrasolar giant planet transits. Astrophys. J. 560, 413–419 (2001)

    Article  ADS  Google Scholar 

  22. Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Burrows, A. & Lunine, J. I. Extrasolar planets—astronomical questions of origin and survival. Nature 378, 333 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Mizuno, H. Formation of the giant planets. Prog. Theor. Phy. 64, 544–557 (1980)

    Article  ADS  Google Scholar 

  25. Boss, A. P. Gas giant protoplanet formation: Disk instability models with thermodynamics and radiative transfer. Astrophys. J. 563, 367–373 (2001)

    Article  ADS  Google Scholar 

  26. Trilling, D. et al. Orbital migration of giant planets: Modeling extrasolar planets. Astrophys. J. 500, 428–439 (1998)

    Article  ADS  Google Scholar 

  27. Fortney, J. J. & Hubbard, W. B. Effects of helium phase separation on the evolution of extrasolar giant planets. Astrophys. J. 608, 1039–1049 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Burgasser, A. et al. The spectra of T dwarfs. I. Near-infrared data and spectral classification. Astrophys. J. 564, 421–451 (2002)

    Article  ADS  CAS  Google Scholar 

  29. Burrows, A., Hubbard, W. B., Lunine, J. I. & Liebert, J. The theory of brown dwarfs and extrasolar giant planets. Rev. Mod. Phys. 73, 719–765 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Burrows, A. & Sharp, C. M. Chemical equilibrium abundances in brown dwarf and extrasolar giant planet atmospheres. Astrophys. J. 512, 843–863 (1999)

    Article  ADS  CAS  Google Scholar 

  31. Lodders, K. Alkali element chemistry in cool dwarf atmospheres. Astrophys. J. 519, 793–801 (1999)

    Article  ADS  CAS  Google Scholar 

  32. Lodders, K. & Fegley, B. Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. I. Carbon, nitrogen, and oxygen. Icarus 155, 393–424 (2002)

    Article  ADS  CAS  Google Scholar 

  33. Burrows, A., Sudarsky, D. & Hubeny, I. Spectra and diagnostics for the direct detection of wide-separation extrasolar giant planets. Astrophys. J. 609, 407–416 (2004)

    Article  ADS  CAS  Google Scholar 

  34. Menou, K., Cho, J. Y-K., Seager, S. & Hansen, B. M. S. “Weather” variability of close-in extrasolar giant planets. Astrophys. J. 587, L113–L116 (2003)

    Article  ADS  Google Scholar 

  35. Cho, J. Y-K., Menou, K., Hansen, B. M. S. & Seager, S. The changing face of the extrasolar giant planet HD 209458b. Astrophys. J. 587, L117–L120 (2003)

    Article  ADS  Google Scholar 

  36. Burkert, A., Lin, D. N. C., Bodenheimer, P., Jones, C. & Yorke, H. On the surface heating of synchronously-spinning short-period jovian planets. Preprint at http://arXiv.org/astro-ph/0312476〉 (2004)

  37. Saumon, D. & Guillot, T. Shock compression of deuterium and the interiors of Jupiter and Saturn. Astrophys. J. 609, 1170–1180 (2004)

    Article  ADS  CAS  Google Scholar 

  38. Sudarsky, D., Burrows, A. & Pinto, P. Albedo and reflection spectra of extrasolar giant planets. Astrophys. J. 538, 885–903 (2000)

    Article  ADS  CAS  Google Scholar 

  39. Dyudina, U. A. et al. Phase light curves for extrasolar Jupiters and Saturns. Preprint at http://arXiv.org/astro-ph/0406390〉 (2004)

  40. Guillot, T. & Showman, A. P. Evolution of “51 Pegasus b-like” planets. Astron. Astrophys. 385, 156–165 (2002)

    Article  ADS  Google Scholar 

  41. Showman, A. P. & Guillot, T. Atmospheric circulation and tides of “51 Pegasus b-like” planets. Astron. Astrophys. 385, 166–180 (2002)

    Article  ADS  Google Scholar 

  42. Seager, S., Whitney, B. A. & Sasselov, D. D. Photometric light curves and polarization of close-in extrasolar giant planets. Astrophys. J. 540, 504–520 (2000)

    Article  ADS  CAS  Google Scholar 

  43. Karkoschka, E. Methane, ammonia, and temperature measurements of the jovian planets and Titan from CCD-spectrophotometry. Icarus 133, 134–146 (1999)

    Article  ADS  Google Scholar 

  44. Sudarsky, D., Burrows, A. & Hubeny, I. Theoretical spectra and atmospheres of extrasolar giant planets. Astrophys. J. 588, 1121–1148 (2003)

    Article  ADS  CAS  Google Scholar 

  45. Unwin, S. C. & Shao, M. in Interferometry in Optical Astronomy (eds Lena, P. J. & Quirrenbach, A.) 754–761, (2000)

    Book  Google Scholar 

  46. Perryman, M. A. C. in GAIA Spectroscopy: Science and Technology (ed. Munari, U.) ASP Conf. Ser. 298, 3–4 (2003)

    Google Scholar 

  47. Arnold, I. & Scheneider, J. The detectability of extrasolar planet surroundings. I. Reflected-light photometry of unresolved rings. Preprint at http://arXiv.org/astro-ph/0403330〉 (2004).

  48. Mather, J. C. & Stockman, H. S. The Next Generation Space Telescope. Proc. SPIE 4013, 2–16 (2000)

    Google Scholar 

  49. Akeson, R. L., Swain, M. R. & Colavita, M. M. in Interferometry in Optical Astronomy (ed. Lena, P. J.) Proc. SPIE 4006, 321–327 (2000)

    Book  Google Scholar 

  50. Akeson, R. L. & Swain, M. R. in From Giant Planets to Cool Stars (eds Griffith, C. A. & Marley, M. S.) ASP Conf. Ser. 212, 300 (2000)

    Google Scholar 

  51. Paresce, F. Scientific objectives of the VLTI interferometer. Messenger 104, 5–7 (2001)

    ADS  Google Scholar 

  52. Beuzit, J.-L. et al. in SF2A-2004: Semaine de l'Astrophysique Francaise (eds Combes, F., Barret, D., Contini, T., Meynadier, F. & Paganii, L.) 32 (EdP-Sciences Conf. Ser., Paris, 2004)

    Google Scholar 

  53. Macintosh, B. et al. in Techniques and Instrumentation for Detection of Exoplanets (ed. Coulter, D. R.) Proc. SPIE 5170, 272–282 (2003)

    Book  Google Scholar 

  54. Tamura, I. & Oasa, Y. in Proc. IAU 8th Asian-Pacific Regional Meeting: Vol. I (eds Ikeuchi, S., Hearnshaw, J. & Hanawa, T.) 73–76 (Astron. Soc. Pacif Vol. 289, San Francisco, 2003)

    Google Scholar 

  55. Hinz, P. M., Angel, J. R. P., Woolf, N. J., Hoffman, W. F. & McCarthy, D. W. in Interferometry in Optical Astronomy (ed. Lena, P. J.) Proc. SPIE 4006, 349 (2000)

    Book  Google Scholar 

  56. Hinz, P. M. Nulling Interferometry for Studying Other Planetary Systems: Techniques and Observations. PhD thesis, Univ. Arizona (2001)

    Google Scholar 

  57. Hawarden, T. G., Gilmozzi, R. & Hainaut, O. in Scientific Frontiers in Research on Extrasolar Planets (eds Deming, D. & Seager, S.) 581–586 (ASP Conf. Ser. Vol. 294, Astron. Soc. Pacif., San Francisco, 2003)

    Google Scholar 

  58. Davison, W. B., Woolf, N. J. & Angel, J. R. P. in Future Giant Telescopes (eds Angel, J. R. P. & Gilmozzi, R.) Proc. SPIE 4840, 533–540 (2003)

    Book  Google Scholar 

  59. Strom, S. Toward a Giant Segmented Mirror Telescope: A Progress Report from AURA's New Inititatives Office. BAAS 203, no. 24.04 (2003)

  60. Aristidi, E. et al. Antarctic site testing: First daytime seeing monitoring at Dome C. Astron. Astrophys. 406, L19–L22 (2003)

    Article  ADS  Google Scholar 

  61. Schneider, G. et al. Domains of observability in the near-infrared with HST/NICMOS and adaptive-optics augmented large ground-based telescopes. Preprint at http://nicmosis.as.arizona.edu:8000/REPORTS/NICMOS_AO_WHITEPAPER.html (2002)

  62. Shao, M., Levine, B. M., Wallace, J. K., Serabyn, E. & Liu, D. T. The visible nulling coronograph—progress towards mission and technology development. BAAS 203, no. 03.04 (2003)

  63. Trauger, J. et al. Eclipse, a direct imaging investigation of nearby planetary systems. BAAS 197, no. 49.07, 1486 (2000)

    ADS  Google Scholar 

  64. Trauger, J., Hull, A. B. & Redding, D. A. Eclipse test bed for very high contrast space astronomy. BAAS 199, no. 86.04, 1431 (2001)

    ADS  Google Scholar 

  65. Beichman, C. A., Coulter, D. R., Lindensmith, C. & Lawson, P. R. in Future Research Direction and Visions for Astronomy (ed. Dressler, A. M.) Proc. SPIE 4835, 115–121 (2002)

    Book  Google Scholar 

  66. Matthews, J. M., Kuschnig, R. & Shkolnik, E. in Proc. SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology at the Dawn of the Millenium (ed. Wilson, A.) 385–390 (ESA SP-464, ESA Publications Division, Noordwijk, 2001)

    Google Scholar 

  67. Roadmap for the Office of Science Origins Theme. NAS/JPL-400-1060 (NASA 2003 Strategic Plan, Document no. NP-2003-01-298-HQ, 2003).

  68. Keats, J. On First Looking into Chapman's Homer in The Poetical Works of John Keats (Macmillan, London, 1884)

    Google Scholar 

  69. Racine, R., Walker, G. A. H., Nadeau, D., Doyon, R. & Marois, C. Speckle noise and the detection of faint companions. Publ. Astron. Soc. Pacif. 111, 587–594 (1999)

    Article  ADS  Google Scholar 

  70. Burrows, A. et al. A nongray theory of extrasolar giant planets and brown dwarfs. Astrophys. J. 491, 856–875 (1997)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

I thank D. Sudarsky, I. Hubeny, W. Hubbard, J. Lunine, J. Liebert, J. Young, J. Trauger, J. Fortney, A. Li, C. Sharp, and D. Milsom for conversations or technical help during the course of this work. I thank NASA and the NASA Astrobiology Institute for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Burrows.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burrows, A. A theoretical look at the direct detection of giant planets outside the Solar System. Nature 433, 261–268 (2005). https://doi.org/10.1038/nature03244

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03244

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing