Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation

Abstract

Microtubules of the mitotic spindle form the structural basis for chromosome segregation. In metaphase, microtubules show high dynamic instability, which is thought to aid the ‘search and capture’ of chromosomes for bipolar alignment on the spindle. Microtubules suddenly become more stable at the onset of anaphase, but how this change in microtubule behaviour is regulated and how important it is for the ensuing chromosome segregation are unknown1,2,3,4. Here we show that in the budding yeast Saccharomyces cerevisiae, activation of the phosphatase Cdc14 at anaphase onset is both necessary and sufficient for silencing microtubule dynamics. Cdc14 is activated by separase, the protease that triggers sister chromatid separation, linking the onset of anaphase to microtubule stabilization5,6. If sister chromatids separate in the absence of Cdc14 activity, microtubules maintain high dynamic instability; this correlates with defects in both the movement of chromosomes to the spindle poles (anaphase A) and the elongation of the anaphase spindle (anaphase B). Cdc14 promotes localization of microtubule-stabilizing proteins to the anaphase spindle, and dephosphorylation of the kinetochore component Ask1 contributes to both the silencing of microtubule turnover and successful anaphase A.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Separase stabilizes microtubule dynamics at anaphase onset.
Figure 2: Cdc14 phosphatase regulates microtubule dynamics in mitosis.
Figure 3: Cdc14 activation is required for successful anaphase A.
Figure 4: Anaphase B defects during TEV protease-triggered anaphase.
Figure 5: Proteins involved in the Cdc14 response.

Similar content being viewed by others

References

  1. Zhai, Y., Kronebusch, P. J. & Borisy, G. G. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J. Cell Biol. 131, 721–734 (1995)

    Article  CAS  Google Scholar 

  2. Mallavarapu, A., Sawin, K. & Mitchison, T. A switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of Schizosaccaromyces pombe. Curr. Biol. 9, 1423–1426 (1999)

    Article  CAS  Google Scholar 

  3. Maddox, P. S., Bloom, K. S. & Salmon, E. D. The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nature Cell Biol. 2, 36–41 (2000)

    Article  CAS  Google Scholar 

  4. Kline-Smith, S. L. & Walczak, C. E. Mitotic spindle assembly and chromosome segregation: refocusing on microtubule dynamics. Mol. Cell 15, 317–327 (2004)

    Article  CAS  Google Scholar 

  5. Stegmeier, F., Visintin, R. & Amon, A. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108, 207–220 (2002)

    Article  CAS  Google Scholar 

  6. Sullivan, M. & Uhlmann, F. A non-proteolytic function of separase links the onset of anaphase to mitotic exit. Nature Cell Biol. 5, 249–254 (2003)

    Article  CAS  Google Scholar 

  7. Belmont, L. D., Hyman, A. A., Sawin, K. E. & Mitchison, T. J. Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 62, 579–589 (1990)

    Article  CAS  Google Scholar 

  8. Verde, F., Labbé, J.-C., Dorée, M. & Karsenti, E. Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs. Nature 343, 233–238 (1990)

    Article  ADS  CAS  Google Scholar 

  9. Uhlmann, F., Wernic, D., Poupart, M.-A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000)

    Article  CAS  Google Scholar 

  10. Straight, A. F., Marshall, W. F., Sedat, J. W. & Murray, A. W. Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277, 574–578 (1997)

    Article  CAS  Google Scholar 

  11. Goshima, G. & Yanagida, M. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100, 619–633 (2000)

    Article  CAS  Google Scholar 

  12. Tanaka, T., Fuchs, J., Loidl, J. & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nature Cell Biol. 2, 492–499 (2000)

    Article  CAS  Google Scholar 

  13. Winey, M. et al. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 129, 1601–1615 (1995)

    Article  CAS  Google Scholar 

  14. Zeng, X. et al. Slk19p is a centromere protein that functions to stabilize mitotic spindles. J. Cell Biol. 146, 415–425 (1999)

    Article  CAS  Google Scholar 

  15. Miller, R. K. et al. The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Mol. Biol. Cell 9, 2051–2068 (1998)

    Article  CAS  Google Scholar 

  16. Pereira, G. & Schiebel, E. Separase regulates INCENP-Aurora B anaphase spindle function through Cdc14. Science 302, 2120–2124 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Sullivan, M., Higuchi, T., Katis, V. L. & Uhlmann, F. Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 117, 471–482 (2004)

    Article  CAS  Google Scholar 

  18. Sullivan, M., Hornig, N. C. D., Porstmann, T. & Uhlmann, F. Studies on substrate recognition by the budding yeast separase. J. Biol. Chem. 279, 1191–1196 (2004)

    Article  CAS  Google Scholar 

  19. Li, Y. & Elledge, S. J. The DASH complex component Ask1 is a cell cycle-regulated Cdk substrate in Saccharomyces cerevisiae. Cell Cycle 2, 143–148 (2003)

    Article  CAS  Google Scholar 

  20. Kosco, K. A. et al. Control of microtubule dynamics by Stu2p is essential for spindle orientation and metaphase chromosome alignment in yeast. Mol. Biol. Cell 12, 2870–2880 (2001)

    Article  CAS  Google Scholar 

  21. van Breugel, M., Drechsel, D. & Hyman, A. Stu2p, the budding yeast member of the conserved Dis1/XMAP215 family of microtubule-associated proteins is a plus end-binding microtubule destabilizer. J. Cell Biol. 161, 359–369 (2003)

    Article  CAS  Google Scholar 

  22. Yin, H., You, L., Pasqualone, D., Kopski, K. M. & Huffaker, T. C. Stu1p is physically associated with β-tubulin and is required for structural integrity of the mitotic spindle. Mol. Biol. Cell 13, 1881–1892 (2002)

    Article  CAS  Google Scholar 

  23. Maiato, H. et al. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113, 891–904 (2003)

    Article  CAS  Google Scholar 

  24. Mishima, M., Pavicic, V., Grüneberg, U., Nigg, E. A. & Glotzer, M. Cell cycle regulation of central spindle assembly. Nature 430, 908–913 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Straight, A. F., Sedat, J. W. & Murray, A. W. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J. Cell Biol. 143, 687–694 (1998)

    Article  CAS  Google Scholar 

  26. Surana, U. et al. Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J. 12, 1969–1978 (1993)

    Article  CAS  Google Scholar 

  27. Murray, A. W., Desai, A. B. & Salmon, E. D. Real time observation of anaphase in vitro. Proc. Natl Acad. Sci. USA 93, 12327–12332 (1996)

    Article  ADS  CAS  Google Scholar 

  28. Wheatley, S. P. et al. CDK1 inactivation regulates anaphase spindle dynamics and cytokinesis in vivo. J. Cell Biol. 138, 385–393 (1997)

    Article  CAS  Google Scholar 

  29. Parry, D. H., Hickson, G. R. X. & O'Farrell, P. H. Cyclin B destruction triggers changes in kinetochore behavior essential for successful anaphase. Curr. Biol. 13, 647–653 (2003)

    Article  CAS  Google Scholar 

  30. Tournebize, R. et al. Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. EMBO J. 16, 5537–5549 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Elledge, J. Kilmartin and A. Straight for reagents, R. Carazo-Salas and A. Nicol for advice on microscopy, J. Cau, T. Davis, A. Hyman, T. Toda and all members of our laboratory for helpful discussions and critical reading of the manuscript, and in particular M. Sullivan for help at the outset of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Uhlmann.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

Summary of microtubule dynamics measurements. (PDF 389 kb)

Supplementary Figure S2

Cdc14 rescues spindle stability during TEV protease-triggered anaphase. (PDF 795 kb)

Supplementary Figure S3

Ectopic Cdc14 in metaphase reduces centromere oscillations. (PDF 182 kb)

Supplementary Figure S4

Rescue of spindle stability in the absence of Cdc14 by deletion of Kip3. (PDF 187 kb)

Supplementary Movie 1

Spindle elongation during separase-triggered anaphase. (MPG 339 kb)

Supplementary Movie 2

Spindle elongation during TEV protease-triggered anaphase, example 1. (MPG 251 kb)

Supplementary Movie 3

Spindle elongation during TEV protease-triggered anaphase, example 2 (MPG 207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, T., Uhlmann, F. Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation. Nature 433, 171–176 (2005). https://doi.org/10.1038/nature03240

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03240

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing