Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Room-temperature ferroelectricity in strained SrTiO3

Abstract

Systems with a ferroelectric to paraelectric transition in the vicinity of room temperature are useful for devices. Adjusting the ferroelectric transition temperature (Tc) is traditionally accomplished by chemical substitution—as in BaxSr1-xTiO3, the material widely investigated for microwave devices in which the dielectric constant (εr) at GHz frequencies is tuned by applying a quasi-static electric field1,2. Heterogeneity associated with chemical substitution in such films, however, can broaden this phase transition by hundreds of degrees3, which is detrimental to tunability and microwave device performance. An alternative way to adjust Tc in ferroelectric films is strain4,5,6,7,8. Here we show that epitaxial strain from a newly developed substrate can be harnessed to increase Tc by hundreds of degrees and produce room-temperature ferroelectricity in strontium titanate, a material that is not normally ferroelectric at any temperature. This strain-induced enhancement in Tc is the largest ever reported. Spatially resolved images of the local polarization state reveal a uniformity that far exceeds films tailored by chemical substitution. The high εr at room temperature in these films (nearly 7,000 at 10 GHz) and its sharp dependence on electric field are promising for device applications1,2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expected shift in Tc of (100) SrTiO3 with biaxial in-plane strain, based on thermodynamic analysis.
Figure 2: In-plane dielectric constant (εr) and dielectric loss (tanδ) in strained epitaxial SrTiO3 films as a function of temperature and film thickness at a measurement frequency (f) of 10 GHz.
Figure 3: Dielectric tunability of the same 500-Å-thick SrTiO3 films grown on DyScO3 and LSAT as shown in Fig. 2.
Figure 4: Comparison of the morphology and microwave electro-optic response of tunable dielectric films at room temperature (just above Tc).

Similar content being viewed by others

References

  1. Vendik, O. G. Ferroelectrics for Microwave Applications (Soviet Radio, Moscow, 1979)

    Google Scholar 

  2. Lancaster, M. J., Powell, J. & Porch, A. Thin-film ferroelectric microwave devices. Supercond. Sci. Technol. 11, 1323–1334 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Hubert, C. et al. Confocal scanning optical microscopy of BaxSr1-xTiO3 thin films. Appl. Phys. Lett. 71, 3353–3355 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Devonshire, A. F. Theory of ferroelectrics. Phil. Mag Suppl. 3, 85–130 (1954)

    MATH  Google Scholar 

  5. Uwe, H. & Sakudo, T. Stress-induced ferroelectricity and soft phonon modes in SrTiO3 . Phys. Rev. B 13, 271–286 (1976)

    Article  ADS  CAS  Google Scholar 

  6. Pertsev, N. A., Zembilgotov, A. G. & Tagantsev, A. K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80, 1988–1991 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Abe, K. et al. Modification of ferroelectricity in heteroepitaxial (Ba,Sr)TiO3 films for non-volatile memory applications. Integr. Ferroelectr. 21, 197–206 (1998)

    Article  CAS  Google Scholar 

  8. Streiffer, S. K. et al. Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films. Phys. Rev. Lett. 89, 067601 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Beach, R. S. et al. Enhanced Curie temperatures and magnetoelastic domains in Dy/Lu superlattices and films. Phys. Rev. Lett. 70, 3502–3505 (1993)

    Article  ADS  CAS  Google Scholar 

  10. Gan, Q., Rao, R. A., Eom, C. B., Garrett, J. L. & Lee, M. Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films. Appl. Phys. Lett. 72, 978–980 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Lock, J. M. Penetration of magnetic fields into superconductors. III. Measurements on thin films of tin, lead and indium. Proc. R. Soc. Lond. A 208, 391–408 (1951)

    Article  ADS  CAS  Google Scholar 

  12. Sato, H. & Naito, M. Increase in the superconducting transition temperature by anisotropic strain effect in (001) La1.85Sr0.15CuO4 thin films on LaSrAlO4 substrates. Physica C 274, 221–226 (1997)

    Article  ADS  CAS  Google Scholar 

  13. Bozovic, I., Logvenov, G., Belca, I., Narimbetov, B. & Sveklo, I. Epitaxial strain and superconductivity in La2-xSrxCuO4 thin films. Phys. Rev. Lett. 89, 107001 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Bednorz, J. G. & Müller, K. A. Sr1-xCaxTiO3: An XY quantum ferroelectric with transition to randomness. Phys. Rev. Lett. 52, 2289–2292 (1984)

    Article  ADS  CAS  Google Scholar 

  15. Ang, C. et al. Dielectric polarization processes in Bi:SrTiO3 . J. Phys. Chem. Solids 61, 191–196 (2000)

    Article  Google Scholar 

  16. Itoh, M. et al. Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite. Phys. Rev. Lett. 82, 3540–3543 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Pertsev, N. A., Tagantsev, A. K. & Setter, N. Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys. Rev. B 61, R825–R829 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Hellwege, K.-H. & Hellwege, A. M. (eds) Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology New Series, Group III, Vol. 16a, 59–64 (Springer, Berlin, 1981)

  19. Hellwege, K.-H. & Hellwege, A. M. (eds) Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology New Series, Group III, Vol. 11, 418 (Springer, Berlin, 1979)

  20. Canedy, C. L. et al. Dielectric properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films: Effect of internal stresses and dislocation-type defects. Appl. Phys. Lett. 77, 1695–1697 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Hellwege, K.-H. & Hellwege, A. M. (eds) Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology New Series, Group III, Vol. 7b, 26; Vol. 7e, 635 (Springer, Berlin, 1976)

  22. JCPDS Powder Diffraction File: Sets 27 to 28 72 (Card 27–204, JCPDS International Centre for Diffraction Data, Swarthmore, 1986).

  23. Chakoumakos, B. C., Schlom, D. G., Urbanik, M. & Luine, J. Thermal expansion of LaAlO3 and (La,Sr)(Al,Ta)O3, substrate materials for superconducting thin-film device applications. J. Appl. Phys. 83, 1979–1982 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Tidrow, S. C. et al. New substrates for HTSC microwave devices. IEEE Trans. Appl. Supercond. 7, 1766–1768 (1997)

    Article  ADS  Google Scholar 

  25. Gevorgian, S. S., Martinsson, T., Linnér, P. L. J. & Kollberg, E. L. CAD models for multilayered substrate interdigital capacitors. IEEE Trans. Microwave Theory Tech. 44, 896–904 (1996)

    Article  ADS  Google Scholar 

  26. Haeni, J. H., Theis, C. D. & Schlom, D. G. RHEED intensity oscillations for the stoichiometric growth of SrTiO3 thin films by reactive molecular beam epitaxy. J. Electroceram. 4, 385–391 (2000)

    Article  CAS  Google Scholar 

  27. Christen, H.-M., Knauss, L. A. & Harshavardhan, K. S. Field-dependent dielectric permittivity of paraelectric superlattice structures. Mater. Sci. Eng. B 56, 200–203 (1998)

    Article  Google Scholar 

  28. Lemanov, V. V., Sotnikov, A. V., Smirnova, E. P. & Weihnacht, M. Giant dielectric relaxation in SrTiO3—SrMg1/3Nb2/3O3 and SrTiO3—SrSc1/2Ta1/2O3 solid solutions. Fiz. Tverd. Tela (St Petersburg) 44, 1948–1957 (2002)

    Google Scholar 

  29. Hubert, C. & Levy, J. New optical probe of GHz polarization dynamics in ferroelectric thin films. Rev. Sci. Instrum. 70, 3684–3687 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Hubert, C., Levy, J., Cukauskas, E. J. & Kirchoefer, S. W. Mesoscopic microwave dispersion in ferroelectric thin films. Phys. Rev. Lett. 85, 1998–2001 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions and interactions with M. D. Biegalski, J. Schubert, S. Trolier-McKinstry and J. Mannhart during the course of this work. In addition, the financial support of the National Science Foundation, the Office of Naval Research for the work performed at NRL, the Swiss National Science Foundation, and, for the work performed at ANL, the US Department of Energy, Basic Energy Sciences—Materials Sciences is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Schlom.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Thickness dependence of the dielectric properties of strained SrTiO3 films. (PDF 481 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haeni, J., Irvin, P., Chang, W. et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004). https://doi.org/10.1038/nature02773

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02773

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing