Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Replication by human DNA polymerase-ι occurs by Hoogsteen base-pairing

Abstract

Almost all DNA polymerases show a strong preference for incorporating the nucleotide that forms the correct Watson–Crick base pair with the template base. In addition, the catalytic efficiencies with which any given polymerase forms the four possible correct base pairs are roughly the same. Human DNA polymerase-ι (hPolι), a member of the Y family of DNA polymerases, is an exception to these rules. hPolι incorporates the correct nucleotide opposite a template adenine with a several hundred to several thousand fold greater efficiency than it incorporates the correct nucleotide opposite a template thymine, whereas its efficiency for correct nucleotide incorporation opposite a template guanine or cytosine is intermediate between these two extremes1,2,3,4,5. Here we present the crystal structure of hPolι bound to a template primer and an incoming nucleotide. The structure reveals a polymerase that is ‘specialized’ for Hoogsteen base-pairing, whereby the templating base is driven to the syn conformation. Hoogsteen base-pairing offers a basis for the varied efficiencies and fidelities of hPolι opposite different template bases, and it provides an elegant mechanism for promoting replication through minor-groove purine adducts that interfere with replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the hPolι–DNA–dTTP ternary complex.
Figure 2: Comparison between hPolι and Dpo4.
Figure 3: Contacts between DNA and hPolι.

Similar content being viewed by others

References

  1. Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S. & Prakash, L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature 406, 1015–1019 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Tissier, A., McDonald, J. P., Frank, E. G. & Woodgate, R. Polι, a remarkably error-prone human DNA polymerase. Genes Dev. 14, 1642–1650 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, Y., Yuan, F., Wu, X. & Wang, Z. Preferential incorporation of G opposite template T by the low-fidelity human DNA polymerase ι. Mol. Cell. Biol. 20, 7009–7108 (2000)

    Google Scholar 

  4. Haracska, L. et al. Targeting of human DNA polymerase ι to the replication machinery via interaction with PCNA. Proc. Natl Acad. Sci. USA 98, 14256–14261 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Washington, M. T., Johnson, R. E., Prakash, L. & Prakash, S. Human DNA polymerase ι utilizes different nucleotide incorporation mechanisms dependent upon the template base. Mol. Cell. Biol. 24, 936–943 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prakash, S. & Prakash, L. Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev. 16, 1872–1883 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. Johnson, R. E., Prakash, S. & Prakash, L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase Polη. Science 283, 1001–1004 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Washington, M. T., Johnson, R. E., Prakash, S. & Prakash, L. Accuracy of thymine-thymine dimer bypass by Saccharomyces cerevisiae DNA polymerase η. Proc. Natl Acad. Sci. USA 97, 3094–3099 (2000)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johnson, R. E., Washington, M. T., Prakash, S. & Prakash, L. Fidelity of human DNA polymerase η. J. Biol. Chem. 275, 7447–7450 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Washington, M. T., Prakash, L. & Prakash, S. Mechanism of nucleotide incorporation opposite a thymine-thymine dimer by yeast DNA polymerase η. Proc. Natl Acad. Sci. USA 100, 12093–12098 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263–265 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Trincao, J. et al. Structure of the catalytic core of S. cerevisiae DNA polymerase η: implications for translesion DNA synthesis. Mol. Cell 8, 417–426 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Ling, H., Boudsocq, F., Woodgate, R. & Yang, W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107, 91–102 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, B.-L., Pata, J. D. & Steitz, T. A. Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. Mol. Cell 8, 427–437 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. Silvian, L. F., Toth, E. A., Pham, P., Goodman, M. F. & Ellenberger, T. Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nature Struct. Biol. 8, 984–989 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Steitz, T. A. DNA polymerases: structural diversity and common mechanisms. J. Biol. Chem. 274, 17395–17398 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. Faili, A. et al. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota. Nature 419, 944–947 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Leontis, N. B., Stombaugh, J. & Westhof, E. The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30, 3497–3531 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson, R. E., Trincao, J., Aggarwal, A. K., Prakash, S. & Prakash, L. Deoxynucleotide triphosphate binding mode conserved in Y family DNA polymerases. Mol. Cell. Biol. 23, 3008–3012 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DeLucia, A. M., Grindley, N. D. & Joyce, C. M. An error-prone family Y DNA polymerase (DinB homolog from Sulfolobus solfataricus) uses a ‘steric gate’ residue for discriminating against ribonucleotides. Nucleic Acids Res. 31, 4129–4137 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Doublie, S., Tabor, S., Long, A. M., Richardson, C. C. & Ellenberger, T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391, 251–258 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Li, Y., Korolev, S. & Waksman, G. Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J. 17, 7514–7525 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Washington, M. T. et al. Efficient and error-free replication past a minor groove DNA adduct by the sequential action of human DNA polymerases ι and κ. Mol. Cell. Biol. 24, 5687–5693 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994)

    Article  Google Scholar 

  28. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank staff at the APS for facilitating data collection; and T. Edwards and C. Escalante for help with structure determination. This work was supported by grants from the NIH (to A.K.A and L.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneel K. Aggarwal.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Table 1

Table listing data collection, phasing, and refinement statistics. (DOC 38 kb)

Supplementary Figure 1

A figure comparing Pol iota with Dpo4. (JPG 53 kb)

Supplementary Figure 1 Legend

A legend for Supplementary Figure 1. (DOC 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, D., Johnson, R., Prakash, S. et al. Replication by human DNA polymerase-ι occurs by Hoogsteen base-pairing. Nature 430, 377–380 (2004). https://doi.org/10.1038/nature02692

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02692

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing