Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Polysaccharide aggregation as a potential sink of marine dissolved organic carbon

Abstract

The formation and sinking of biogenic particles mediate vertical mass fluxes and drive elemental cycling in the ocean1. Whereas marine sciences have focused primarily on particle production by phytoplankton growth, particle formation by the assembly of organic macromolecules has almost been neglected2,3. Here we show, by means of a combined experimental and modelling study, that the formation of polysaccharide particles is an important pathway to convert dissolved into particulate organic carbon during phytoplankton blooms, and can be described in terms of aggregation kinetics. Our findings suggest that aggregation processes in the ocean cascade from the molecular scale up to the size of fast-settling particles, and give new insights into the cycling and export of biogeochemical key elements such as carbon, iron and thorium.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observed and modelled dynamics of organic carbon during a mesocosm bloom experiment with the marine phytoplankton species Emiliania huxleyi.
Figure 2: Observed dynamics of bacteria and mono- and oligosaccharides.

Similar content being viewed by others

References

  1. Mc Cave, I. N. Vertical flux of particles in the ocean. Deep-Sea Res. 22, 491–502 (1975)

    Google Scholar 

  2. Chin, W., Orellana, M. V. & Verdugo, P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Wells, M. L. A neglected dimension. Nature 391, 530–531 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Volk, T. & Hoffert, M. I. in The Carbon Cycle and Atmospheric CO2; Natural Variations Archaen to Present (eds Sundquist, E. T. & Broecker, W. S.) 99–110 (Geophys. Monogr. 32, American Geophysical Union, Washington DC, 1985)

    Google Scholar 

  5. Dugdale, R. C. & Goering, J. J. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12, 196–206 (1967)

    Article  ADS  CAS  Google Scholar 

  6. Eppley, R. W. & Peterson, B. J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282, 677–680 (1979)

    Article  ADS  Google Scholar 

  7. Passow, U. Transparent exopolymer particles (TEP) in the marine environment. Prog. Oceanogr. 55, 287–333 (2002)

    Article  ADS  Google Scholar 

  8. Engel, A. The role of transparent exopolymer particles (TEP) in the increase in apparent particles stickiness (α) during the decline of a diatom bloom. J. Plankton Res. 22, 485–497 (2000)

    Article  CAS  Google Scholar 

  9. Asper, V. L., Deuser, W. G., Knauer, G. A. & Lorenz, S. E. Rapid coupling of sinking particle fluxes between surface and deep ocean waters. Nature 357, 670–672 (1992)

    Article  ADS  Google Scholar 

  10. Nanninga, H. J., Ringenaldus, P. & Westbroek, P. Immunological quantification of a polysaccharide formed by Emiliania huxleyi. J. Mar. Syst. 9, 67–74 (1996)

    Article  ADS  Google Scholar 

  11. Engel, A. et al. TEP and DOC production by Emiliania huxleyi exposed to different CO2 concentrations: A mesocosm experiment. Aquat. Microb. Ecol. 34, 93–104 (2004)

    Article  Google Scholar 

  12. Von Smochulowski, M. Versuch einer mathematischen Theorie der Koagulationskinetic von Kolloidteilchen. Z. Phys. Chem. 92, 129–168 (1917)

    Google Scholar 

  13. Ziff, R. M. & Stell, G. Kinetics of polymer gelation. J. Chem. Phys. 73, 3492–3499 (1980)

    Article  ADS  CAS  Google Scholar 

  14. Ruiz, J., Prieto, L. & Ortegon, F. Diatom aggregate formation and fluxes, a modeling analysis under different size-resolution schemes and with empirically determined aggregation kernels. Deep-Sea Res. I 49, 495–515 (2002)

    Article  Google Scholar 

  15. Geider, R. J., MacIntyre, H. L., Graziano, L. M. & McKay, R. M. L. Responses of the photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and phosphorus limitation. Eur. J. Phycol. 33, 5315–5332 (1998)

    Article  Google Scholar 

  16. Carlson, C. A. in Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C.) 59–90 (Academic, Amsterdam, 2002)

    Google Scholar 

  17. Nielsen, M. V. Growth, dark respiration and photosynthetic parameters of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) acclimated to different day length–irradiance combinations. J. Phycol. 33, 818–822 (1997)

    Article  Google Scholar 

  18. Amon, R. M. W. & Benner, R. Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature 369, 549–552 (1994)

    Article  ADS  CAS  Google Scholar 

  19. Benner, R. in Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. A. & Carlson, C.) 59–90 (Academic, Amsterdam, 2002)

    Book  Google Scholar 

  20. Del Giorgio, P. A. & Duarte, C. M. Respiration in the open ocean. Nature 420, 379–384 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Pakulski, J. D. & Benner, R. Abundance and distribution of carbohydrates in the ocean. Limnol. Oceanogr. 39, 930–940 (1994)

    Article  ADS  CAS  Google Scholar 

  22. Biddanda, B. & Benner, R. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnol. Oceanogr. 42, 506–518 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Baines, S. B. & Pace, M. L. The production of dissolved organic matter by phytoplankton and its importance to bacteria, patterns across marine and freshwater systems. Limnol. Oceanogr. 36, 1078–1090 (1991)

    Article  ADS  Google Scholar 

  24. Myklestad, S. M., Skånoy, E. & Hestmann, S. A sensitive and rapid method for analysis of dissolved mono- and polysaccharides in seawater. Mar. Chem. 56, 279–286 (1997)

    Article  CAS  Google Scholar 

  25. Wu, J., Boyle, E., Sunda, W. & Wen, L.-S. Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific. Science 293, 847–849 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Passow, U. & Alldredge, A. L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP) in the ocean. Limnol. Oceanogr. 40, 1326–1335 (1995)

    Article  ADS  CAS  Google Scholar 

  27. Porter, K. G. & Feig, T. S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948 (1980)

    Article  ADS  Google Scholar 

  28. Wells, M. L. & Goldberg, E. D. Marine submicron particles. Mar. Chem. 40, 5–18 (1992)

    Article  CAS  Google Scholar 

  29. Mari, X. Carbon content and C:N ratio of transparent exopolymer particles (TEP) produced by bubbling of exudates of diatoms. Mar. Ecol. Prog. Ser. 33, 59–71 (1999)

    Article  ADS  Google Scholar 

  30. Mc Cave, I. N. Size spectra and aggregation of suspended particles in the deep ocean. Deep-Sea Res. 31, 329–352 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Terbrüggen for technical assistance and M. Schartau for discussions. This work was supported by the Large-Scale Facility of the University of Bergen, Norway and the European Commission Human Potential Programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anja Engel or Silke Thoms.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engel, A., Thoms, S., Riebesell, U. et al. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428, 929–932 (2004). https://doi.org/10.1038/nature02453

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02453

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing