Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff

Abstract

Geological and palaeomagnetic studies indicate that ice sheets may have reached the Equator at the end of the Proterozoic eon, 800 to 550 million years ago1,2, leading to the suggestion of a fully ice-covered ‘snowball Earth’3,4. Climate model simulations indicate that such a snowball state for the Earth depends on anomalously low atmospheric carbon dioxide concentrations5,6, in addition to the Sun being 6 per cent fainter than it is today. However, the mechanisms producing such low carbon dioxide concentrations remain controversial7,8. Here we assess the effect of the palaeogeographic changes preceding the Sturtian glacial period, 750 million years ago, on the long-term evolution of atmospheric carbon dioxide levels using the coupled climate9–geochemical10 model GEOCLIM. In our simulation, the continental break-up of Rodinia leads to an increase in runoff and hence consumption of carbon dioxide through continental weathering that decreases atmospheric carbon dioxide concentrations by 1,320 p.p.m. This indicates that tectonic changes could have triggered a progressive transition from a ‘greenhouse’ to an ‘icehouse’ climate during the Neoproterozoic era. When we combine these results with the concomitant weathering effect of the voluminous basaltic traps erupted throughout the break-up of Rodinia11, our simulation results in a snowball glaciation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Palaeogeographies and hydrologic cycle.
Figure 2: Effect of the Rodinia break-up on the greenhouse effect.
Figure 3: Atmospheric CO2 history during the time period preceding the Sturtian snowball event.

References

  1. Evans, D. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Am. J. Sci. 300, 347–433 (2000)

    Article  ADS  Google Scholar 

  2. Sohl, L. E., Christie-Blick, N. & Kent, D. V. Paleomagnetic polarity reversals in Marinoan (ca 600 Ma) glacial deposits of Australia: Implications for the duration of low-latitude glaciation in Neoproterozoic time. Geol. Soc. Am. Bull. 111, 1120–1139 (1999)

    Article  ADS  Google Scholar 

  3. Kirschvink, J. L. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C. C.) 51–52 (Cambridge Univ. Press, Cambridge, 1992)

    Google Scholar 

  4. Hoffman, P. F. & Schrag, D. P. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14, 129–155 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Hyde, W. T., Crowley, T. J., Baum, S. K. & Peltier, R. W. Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature 405, 425–429 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Donnadieu, Y., Fluteau, F., Ramstein, G., Ritz, C. & Besse, J. Is there a conflict between the Neoproterozoic glacial deposits and the snowball Earth model: an improved understanding with numerical modelings. Earth Planet. Sci. Lett. 208, 101–112 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Schrag, D. P., Berner, R. A., Hoffman, P. F. & Halverson, G. P. On the initiation of a snowball Earth. Geochem. Geophys. Geosyst. 3, 101029/2001GC000219 (2002)

  8. Goddéris, Y. et al. The Sturtian “snowball” glaciation: fire and ice. Earth Planet. Sci. Lett. 211, 1–12 (2003)

    Article  ADS  Google Scholar 

  9. Petoukhov, V. et al. CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate. Clim. Dyn. 16, 1–17 (2000)

    Article  Google Scholar 

  10. Goddéris, Y. & Joachimski, M. M. Global change in the late Devonian: modelling the Frasnian-Famennian short-term carbon isotope excursions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 202, 309–329 (2004)

    Article  Google Scholar 

  11. Li, Z. X. et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambr. Res. 22, 85–109 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  12. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. J. Geophys. Res. 86, 9776–9782 (1981)

    Article  ADS  CAS  Google Scholar 

  13. Oliva, P., Viers, J. & Dupré, B. Chemical weathering in granitic crystalline environments. Chem. Geol. 202, 225–256 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Berner, R. A. The rise of plants and their effect on weathering and atmospheric CO2 . Science 276, 544–546 (1997)

    Article  CAS  Google Scholar 

  15. Millot, R., Gaillardet, J., Dupré, B. & Allègre, C. J. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet. Sci. Lett. 196, 83–98 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Dessert, C. et al. Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet. Sci. Lett. 188, 459–474 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Ganopolski, A., Rahmstorf, S., Petoukhov, V. & Claussen, M. Simulation of modern and glacial climates with a coupled model of intermediate complexity. Nature 391, 351–356 (1998)

    Article  ADS  Google Scholar 

  18. Donnadieu, Y., Ramstein, G., Fluteau, F., Roche, D. & Ganopolski, A. The impact of atmospheric and oceanic heat transports on the sea ice-albedo instability during the Neoproterozoic. Clim. Dyn. (in the press)

  19. Meert, J. G. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362, 1–40 (2003)

    Article  ADS  Google Scholar 

  20. Meert, J. G. & Torsvik, T. H. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 375, 261–288 (2003)

    Article  ADS  Google Scholar 

  21. Barfod, G. H. et al. New Lu-Hf and Pb-Pb constraints on the earliest animal fossils. Earth Planet. Sci. Lett. 201, 203–212 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Knoll, A. H. Learning to tell Neoproterozoic time. Precambr. Res. 100, 3–20 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Rice, A. H. N., Halverson, G. P. & Hoffman, P. F. Three for the Neoproterozoic: Sturtian, Marinoan and Varangerian glaciations. Geophys. Res. Abstr. 5, 11425 (2003)

    Google Scholar 

  24. Pisarevsky, S. A., Komissarova, R. A. & Khramov, A. N. New palaeomagnetic result from Vendian red sediments in Cisbaikalia and the problem of the relationship of Siberia and Laurentia in the Vendian. Geophys. J. Int. 140, 598–610 (2000)

    Article  ADS  Google Scholar 

  25. Trindade, R. I. F., Font, E., D'Agrella-Filho, M. S., Nogueira, A. C. R. & Riccomini, C. Low-latitude and multiple geomagnetic reversals in the Neoproterozoic cap carbonate, Amazon craton. Terra Nova 15, 441–446 (2003)

    Article  ADS  Google Scholar 

  26. Donnadieu, Y., Goddéris, Y., Ramstein, G. & Fluteau, F. in Multidisciplinary Studies Exploring Extreme Proterozoic Environment Conditions (eds Jenkins, G. S., McMenamin, M., McKay, C. P. & Sohl, L. E.) (American Geophysical Union, Washington DC, in the press)

  27. Rowley, D. B. Rate of plate creation and destruction: 180 Ma to present. Geol. Soc. Am. Bull. 114, 927–933 (2002)

    Article  ADS  Google Scholar 

  28. Gaffin, S. Ridge volume dependence on seafloor generation rate and inversion using long term sea level change. Am. J. Sci. 287, 596–611 (1987)

    Article  ADS  Google Scholar 

  29. Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of the large rivers. Chem. Geol. 159, 3–30 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Poulsen, C. J., Pierrehumbert, R. T. & Jacob, R. L. Impact of ocean dynamics on the simulation of the Neoproterozoic “snowball Earth”. Geophys. Res. Lett. 28, 1575–1578 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Donnadieu.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnadieu, Y., Goddéris, Y., Ramstein, G. et al. A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature 428, 303–306 (2004). https://doi.org/10.1038/nature02408

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02408

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing