Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis

Abstract

Synapses are specialized intercellular junctions in which cell adhesion molecules connect the presynaptic machinery for neurotransmitter release to the postsynaptic machinery for receptor signalling. Neurotransmitter release requires the presynaptic co-assembly of Ca2+ channels with the secretory apparatus, but little is known about how synaptic components are organized. α-Neurexins, a family of >1,000 presynaptic cell-surface proteins encoded by three genes, link the pre- and postsynaptic compartments of synapses by binding extracellularly to postsynaptic cell adhesion molecules and intracellularly to presynaptic PDZ domain proteins. Using triple-knockout mice, we show that α-neurexins are not required for synapse formation, but are essential for Ca2+-triggered neurotransmitter release. Neurotransmitter release is impaired because synaptic Ca2+ channel function is markedly reduced, although the number of cell-surface Ca2+ channels appears normal. These data suggest that α-neurexins organize presynaptic terminals by functionally coupling Ca2+ channels to the presynaptic machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Essential role of α-neurexins.
Figure 2: Reduced spontaneous neurotransmitter release (minis) in the neocortex and brainstem from α-neurexin KO mice.
Figure 3: Impaired evoked neurotransmitter release in neocortical synapses from α-neurexin KO mice.
Figure 4: Evoked excitatory synaptic responses in brainstem synapses: effect of ω-conotoxin.
Figure 5: Impaired Ca2+ channel function in α-neurexin KO mice: rescue by transgenic neurexin 1α.
Figure 6: Ca2+ channels are normally expressed in α-neurexin KO mice but are partly inactivated after synaptic contacts are established.

Similar content being viewed by others

References

  1. Hessler, N. A., Shirke, A. M. & Malinow, R. The probability of transmitter release at a mammalian central synapse. Nature 366, 569–572 (1993)

    Article  ADS  CAS  Google Scholar 

  2. Rosenmund, C., Clements, J. D. & Westbrook, G. L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 (1993)

    Article  ADS  CAS  Google Scholar 

  3. Xu-Friedman, M. A., Harris, K. M. & Regehr, W. G. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J. Neurosci. 21, 6666–6672 (2001)

    Article  CAS  Google Scholar 

  4. Rozov, A., Burnashev, N., Sakmann, B. & Neher, E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J. Physiol. 531, 807–826 (2001)

    Article  CAS  Google Scholar 

  5. Katz, B. The Release of Neural Transmitter Substances (Liverpool Univ. Press, Liverpool, 1969)

    Google Scholar 

  6. Borst, J. G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996)

    Article  ADS  CAS  Google Scholar 

  7. Atlas, D. Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism. J. Neurochem. 77, 972–985 (2001)

    Article  CAS  Google Scholar 

  8. Koester, H. J. & Sakmann, B. Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol. 529, 625–646 (2000)

    Article  CAS  Google Scholar 

  9. Catterall, W. A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000)

    Article  CAS  Google Scholar 

  10. Bergsman, J. B. & Tsien, R. W. Syntaxin modulation of calcium channels in cortical synaptosomes as revealed by botulinum toxin C1. J. Neurosci. 20, 4368–4378 (2000)

    Article  CAS  Google Scholar 

  11. Maximov, A., Südhof, T. C. & Bezprozvanny, I. Association of neuronal calcium channels with modular adaptor proteins. J. Biol. Chem. 274, 24453–24456 (1999)

    Article  CAS  Google Scholar 

  12. Ushkaryov, Y. A., Petrenko, A. G., Geppert, M. & Südhof, T. C. Neurexins: Synaptic cell surface proteins related to the α-latrotoxin receptor and laminin. Science 257, 50–56 (1992)

    Article  ADS  CAS  Google Scholar 

  13. Geppert, M. et al. Neurexin Iα is a major α-latrotoxin receptor that cooperates in α-latrotoxin action. J. Biol. Chem. 273, 1705–1710 (1998)

    Article  CAS  Google Scholar 

  14. Sugita, S. et al. A stoichiometric complex of neurexins and dystroglycan in brain. J. Cell Biol. 154, 435–445 (2001)

    Article  CAS  Google Scholar 

  15. Ichtchenko, K. et al. Neuroligin 1: A splice-site specific ligand for β-neurexins. Cell 81, 435–443 (1995)

    Article  CAS  Google Scholar 

  16. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000)

    Article  CAS  Google Scholar 

  17. Moore, S. A. et al. Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 418, 422–425 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Levi, S. et al. Dystroglycan is selectively associated with inhibitory GABAergic synapses but is dispensable for their differentiation. J. Neurosci. 22, 4274–4285 (2002)

    Article  CAS  Google Scholar 

  19. Hata, Y., Butz, S. & Südhof, T. C. CASK: A novel dlg/PSD95 homologue with an n-terminal CaM kinase domain identified by interaction with neurexins. J. Neurosci. 16, 2488–2494 (1996)

    Article  CAS  Google Scholar 

  20. Biederer, T. & Südhof, T. C. Mints as adaptors: Direct binding to neurexins and recruitment of munc18. J. Biol. Chem. 275, 39803–39806 (2000)

    Article  CAS  Google Scholar 

  21. Petrenko, A. G. et al. Binding of synaptotagmin to the α-latrotoxin receptor implicates both in synaptic vesicle exocytosis. Nature 353, 65–68 (1991)

    Article  ADS  CAS  Google Scholar 

  22. Missler, M. & Südhof, T. C. Neurexins: three genes and 1001 products. Trends Genet. 14, 20–26 (1998)

    Article  CAS  Google Scholar 

  23. Tabuchi, K. & Südhof, T. C. Structure and evolution of neurexin genes: Insight into the mechanism of alternative splicing. Genomics 79, 849–859 (2002)

    Article  CAS  Google Scholar 

  24. Ullrich, B., Ushkaryov, Y. A. & Südhof, T. C. Cartography of neurexins: More than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron 14, 497–507 (1995)

    Article  CAS  Google Scholar 

  25. McIntire, S. L., Reimer, R. J., Schuske, K., Edwards, R. H. & Jorgensen, E. M. Identification and characterization of the vesicular GABA transporter. Nature 389, 870–876 (1997)

    Article  ADS  CAS  Google Scholar 

  26. Bellocchio, E. E., Reimer, R. J., Fremeau, R. T. & Edwards, R. H. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289, 957–960 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Takamori, S., Rhee, J. S., Rosenmund, C. & Jahn, R. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407, 189–194 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Rico, B., Xu, B. & Reichardt, L. F. TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nature Neurosci. 5, 225–233 (2002)

    Article  CAS  Google Scholar 

  29. Ben-Ari, Y. Developing networks play a similar melody. Trends Neurosci. 24, 353–360 (2001)

    Article  CAS  Google Scholar 

  30. Plitzko, D., Rumpel, S. & Gottmann, K. Insulin promotes functional induction of silent synapses in differentiating rat neocortical neurons. Eur. J. Neurosci. 14, 1412–1415 (2001)

    Article  CAS  Google Scholar 

  31. Smith, J. C., Ellenberger, H. H., Ballanyi, K., Richter, D. W. & Feldman, J. L. Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254, 726–729 (1991)

    Article  ADS  CAS  Google Scholar 

  32. McCleskey, E. W. et al. Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc. Natl Acad. Sci. USA 84, 4327–4331 (1987)

    Article  ADS  CAS  Google Scholar 

  33. Mohrmann, R., Werner, M., Hatt, H. & Gottmann, K. Target-specific factors regulate the formation of glutamatergic transmitter release sites in cultured neocortical neurons. J. Neurosci. 19, 10004–10013 (1999)

    Article  CAS  Google Scholar 

  34. Rosenmund, C. & Stevens, C. F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996)

    Article  CAS  Google Scholar 

  35. Singer, J. H., Bellingham, M. C. & Berger, A. J. Presynaptic inhibition of glutamatergic synaptic transmission to rat motoneurons by serotonin. J. Neurophysiol. 76, 799–807 (1996)

    Article  CAS  Google Scholar 

  36. Iwasaki, S., Momiyama, A., Uchitel, O. D. & Takahashi, T. Developmental changes in calcium channel types mediating central synaptic transmission. J. Neurosci. 20, 59–65 (2000)

    Article  CAS  Google Scholar 

  37. Ludwig, A., Flockerzi, V. & Hofmann, F. Regional expression and cellular localization of the α1 and β subunit of high voltage-activated calcium channels in rat brain. J. Neurosci. 17, 1339–1349 (1997)

    Article  CAS  Google Scholar 

  38. Jun, K. et al. Ablation of P/Q-type Ca2+ channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the α1A-subunit. Proc. Natl Acad. Sci. USA 96, 15245–15250 (1999)

    Article  ADS  CAS  Google Scholar 

  39. Saegusa, H. et al. Altered pain responses in mice lacking α1E subunit of the voltage-dependent Ca2+ channel. Proc. Natl Acad. Sci. USA 97, 6132–6137 (2000)

    Article  ADS  CAS  Google Scholar 

  40. Ino, M. et al. Functional disorders of the sympathetic nervous system in mice lacking the α1B subunit (Cav 2.2) of N-type calcium channels. Proc. Natl Acad. Sci. USA 98, 5323–5328 (2001)

    Article  ADS  CAS  Google Scholar 

  41. Muth, J. N., Varadi, G. & Schwartz, A. Use of transgenic mice to study voltage-dependent Ca2+-channels. Trends Pharmacol. Sci. 22, 526–532 (2001)

    Article  CAS  Google Scholar 

  42. Fletcher, T. L., De Camilli, P. & Banker, G. Synaptogenesis in hippocampal cultures: evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development. J. Neurosci. 14, 6695–6706 (1994)

    Article  CAS  Google Scholar 

  43. Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936–943 (2000)

    Article  ADS  CAS  Google Scholar 

  44. Malinow, R. & Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002)

    Article  CAS  Google Scholar 

  45. Biederer, T. et al. SynCAM, A synaptic cell adhesion molecule that drives synapse assembly. Science 297, 1525–1531 (2002)

    Article  ADS  CAS  Google Scholar 

  46. Rosahl, T. W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995)

    Article  ADS  CAS  Google Scholar 

  47. Palmiter, R. D. et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300, 611–615 (1982)

    Article  ADS  CAS  Google Scholar 

  48. Zhang, W., Elsen, F., Barnbrock, A. & Richter, D. W. Postnatal development of GABAB receptor-modulation of voltage-activated Ca2+ currents in mouse brain-stem neurons. Eur. J. Neurosci. 11, 2332–2342 (1999)

    Article  CAS  Google Scholar 

  49. Sakmann, B. & Neher, E. (eds) Single-Channel Recordings (Plenum, New York, 1995)

  50. Bezanilla, F. & Armstrong, C. M. Inactivation of the sodium channel. I. Sodium current experiments. J. Gen. Physiol. 70, 549–566 (1977)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Roth, I. Leznicki, E. Borowicz, K. Fricke, C. Bertram and S. Gerke for technical assistance; K. Nebendahl for help with mouse husbandry; D. Schild and M. Rickmann for use of confocal and electron microscopes; R. Jahn for antibodies; and J. Goldstein, M. S. Brown, E. Neher, P. Brehm, D. W. Richter and H. Hatt for advice. This study was supported by grants from the NIMH (to T.C.S.) and the Deutsche Forschungsgemeinschaft (to M.M., K.G. and W.Z.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Markus Missler or Thomas C. Südhof.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Missler, M., Zhang, W., Rohlmann, A. et al. α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 423, 939–948 (2003). https://doi.org/10.1038/nature01755

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01755

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing