Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell division

Abstract

In creating the mitotic spindle and the contractile ring, natural selection has engineered fascinating precision machines whose movements depend upon forces generated by ensembles of cytoskeletal proteins. These machines segregate chromosomes and divide the cell with high fidelity. Current research on the mechanisms and regulation of spindle morphogenesis, chromosome motility and cytokinesis emphasizes how ensembles of dynamic cytoskeletal polymers and multiple motors cooperate to generate the forces that guide the cell through mitosis and cytokinesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitosis and cytokinesis.
Figure 2: Spindle behaviour.

Similar content being viewed by others

References

  1. Harris, H. The Birth of the Cell (Yale Univ. Press, New Haven, 1999).

    Google Scholar 

  2. Mitchison, T. J. & Salmon, E. D. Mitosis: a history of division. Nature Cell Biol. 3, E17–E22 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Wood, K. W., Cornwell, W. D. & Jackson, J. R. Past and future of the mitotic spindle as an oncology target. Curr. Opin. Pharmacol. 1, 370–377 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Microtubule motors in mitosis. Nature 407, 41–47 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Karsenti, E. & Vernos, I. The mitotic spindle, a self-made machine. Science 294, 543–547 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Wittman, T., Hyman, A. & Desai, A. The spindle, a dynamic assembly of microtubules and motors. Nature Cell Biol. 3, E28–E34 (2001).

    Article  Google Scholar 

  7. Scholey, J. M. & Mogilner, A. in Molecular Motors (ed. Schliwa, M.) 327–355 (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  8. Kapoor, T. M. & Compton, D. A. Searching for the middle ground: mechanisms of chromosome alignment during mitosis. J. Cell Biol. 157, 551–556 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McIntosh, J. R., Grishunk, E. L. & West, R. R. Chromosome-microtubule interactions during mitosis. Annu. Rev. Cell Dev. Biol. 18, 193–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Shah, J. V. & Cleveland, D. W. Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell 103, 997–1000 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Glotzer, M. Animal cell cytokinesis. Annu. Rev. Cell Dev. Biol. 17, 351–386 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Bray, D. Cell Movements(Garland, New York, 2001).

    Google Scholar 

  14. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, MA, 2001).

    Google Scholar 

  15. Nicklas, R. B. Measurements of the force produced by the mitotic spindle in anaphase. J. Cell Biol. 97, 542–548 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Rappaport, R. Cell division: direct measurement of maximum tension exerted by furrow of echinoderm eggs. Science 156, 1241–1243 (1967).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Burton, K. & Taylor, D. L. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385, 450–454 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Gunawardane, R. N., Lizarraga, S. B., Wiese, C., Wilde, A. & Zheng, Y. Gamma-tubulin complexes and their role in microtubule nucleation. Curr. Top. Dev. Biol. 49, 55–73 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Moritz, M., Braunfeld, M. B., Guenebaut, V., Heuser, J. & Agard, D. A. Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nature Cell Biol. 2, 365–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Keating, T. J. & Borisy, G. G. Immunostructural evidence for the template mechanism of microtubule nucleation. Nature Cell Biol. 2, 352–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Erickson, H. P. γ-tubulin nucleation: template or protofilament? Nature Cell Biol. 2, E93–E96 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Popov, A. V., Severin, F. & Karsenti, E. XMAP215 is required for the microtubule-nucleating activity of centrosomes. Curr. Biol. 12, 1326–1330 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Kalab, P., Weis, K. & Heald, R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295, 2452–2456 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Walczak, C. E. Ran hits the ground running. Nature Cell Biol. 3, E1–E3 (2001).

    Article  Google Scholar 

  25. Theurkauf, W. E. TACCing down the spindle poles. Nature Cell Biol. 3, E159–E161 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. Model for the proposed roles of different microtubule based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Brust-Mascher, I. & Scholey, J. M. Microtubule flux and sliding in mitotic spindles of early Drosophila embryos. Mol. Biol. Cell 13, 3967–3975 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nedelec, F. Computer simulations reveal motor properties generating stable antiparallel microtubule interactions. J. Cell Biol. 158, 1005–1015 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kapoor, T. M. & Mitchison, T. J. Eg5 is static in bipolar spindles relative to tubulin: evidence for a static spindle matrix. J. Cell Biol. 154, 1125–1133 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wells, W. A. Searching for a spindle matrix. J. Cell Biol. 154, 1102–1104 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wigge, P. A. et al. Analysis of the Saccharomyces spindle pole by matrix assisted laser desorption/ionization (MALDI) mass spectroscopy. J. Cell Biol. 141, 967–977 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mack, G. J. & Compton, D. A. Analysis of mitotic microtubule-associated proteins using mass spectrometry identifies astrin, a spindle-associated protein. Proc. Natl Acad. Sci. USA 98, 14434–14439 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kinoshita, K., Arnal, I., Desai, A., Drechsel, D. N. & Hyman, A. A. Reconstitution of physiological microtubule dynamics using purified components. Science 294, 1340–1343 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Heald, R. A dynamic duo of microtubule regulators. Nature Cell Biol. 2, E11–E12 (1999).

    Article  Google Scholar 

  35. Severin, F., Haberman, B., Huffaker, T. & Hyman, A. A. Stu2 promotes mitotic spindle elongation in anaphase. J. Cell Biol. 153, 435–442 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ostergren, G. The mechanism of co-orientation in bivalents and multivalents. The theory of orientation by pulling. Hereditas 37, 85–156 (1951).

    Article  Google Scholar 

  37. Cytrynbaum, E., Scholey, J. M. & Mogilner, A. Force-balance model for early spindle pole separation in Drosophila embryonic mitotic spindles. Biophys. J. 84, 757–769 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holy, T. E. & Leibler, S. Dynamic instability of microtubules as an efficient way to search in space. Proc. Natl Acad. Sci. USA 91, 5682–5685 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alexander, S. P. & Rieder, C. L. Chromosome motion during attachment to the vertebrate spindle: initial saltatory-like behavior of chromosomes and quantitative analysis of force production by nascent kinetochore fibers. J. Cell Biol. 113, 805–815 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Skibbens, R. V., Skeen, V. P. & Salmon, E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol. 122, 859–875 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Cytoplasmic dynein is required for poleward chromosome movement in Drosophila embryos. Nature Cell Biol. 2, 922–930 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Yucel, J. K. et al. CENP-meta, an essential kinetochore kinesin required for the maintenance of metaphase chromosome alignment in Drosophila. J. Cell Biol. 150, 1–12 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maddox, P., Desai, A., Oegema, K., Mitchison, T. J. & Salmon, E. D. Poleward microtubule flux is a major component of spindle dynamics and anaphase A in mitotic Drosophila embryos. Curr. Biol. 12, 1670–1674 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Joglekar, A. P. & Hunt, A. J. A simple, mechanistic model for directional instability during mitotic chromosome movements. Biophys J. 83, 42–58 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Levesque, A. A. & Compton, D. A. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154, 1135–46 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maney, T., Ginkel, L. M., Hunter, A. W. & Wordeman, L. The kinetochore of higher eucaryotes: a molecular view. Int. Rev. Cytol. 194, 67–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin-I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Nasmyth, K., Peters, J. M. & Uhlmann, F. Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288, 1379–1384 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Funabiki, H. & Murray, A. W. The Xenopus chromokinesin, Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102, 411–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Marshall, W. F., Marko, J. F., Agard, D. A. & Sedat, J. W. Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis. Curr. Biol. 11, 569–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Zhou, J., Yao, J. & Yoshi, H. C. Attachment and tension in the spindle assembly checkpoint. J. Cell Sci. 115, 3547–3555 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Howell, B. J., Hoffman, D. B., Fang, G., Murray, A. W. & Salmon, E. D. Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J. Cell Biol. 150, 1233–1250 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, X. & Nicklas, R. B. Tension-sensitive kinetochore phosphorylation and the chromosome distribution checkpoint in praying mantid spermatocytes. J. Cell Sci. 110, 537–545 (1997).

    CAS  PubMed  Google Scholar 

  54. Hoffman, D. B., Pearson, C. G., Yen, T. J., Howell, B. J. & Salmon, E. D. Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. Mol. Biol. Cell 12, 1995–2009 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Howell, B. J. et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J. Cell Biol. 155, 1159–1172 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chan, G. K. T., Jablonski, S. A., Starr, D. A., Goldberg, M. L. & Yen, T. J. Human Zw10 and ROD are mitotic checkpoint proteins that bind to kinetochores. Nature Cell Biol. 2, 944–947 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Wojcik, E. et al. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nature Cell Biol. 3, 1001–1008 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Abrieu, A., Kahana, J. A., Wood, K. W. & Cleveland, D. W. Cenp-E as an essential component of the mitotic checkpoint in vitro. Cell 102, 817–826 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Nicklas, R. B., Waters, J. C., Salmon, E. D. & Ward, S. C. Checkpoint signals in grasshopper meiosis are sensitive to microtubule attachment but tension is still essential. J. Cell Sci. 114, 4173–4183 (2001).

    CAS  PubMed  Google Scholar 

  60. Skoufias, D. A., Andreassen, P. R., Lacroix, F. B., Wilson, L. & Margolis, R. L. Mammalian mad2 and bub1/bubR1 recognize distinct spindle-attachment and kinetochore-tension checkpoints. Proc. Natl Acad. Sci. USA 98, 4492–4497 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shannon, K. B., Canman, J. C. & Salmon, E. D. Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension. Mol. Biol. Cell 10.1091/mbc.E02-03-0137 (2002).

  62. Zhou, J., Panda, D., Landen, J. W., Wilson, L. & Joshi, H. C. Minor alteration of microtubule dynamics causes loss of tension across kinetochore pairs and activates the spindle checkpoint. J. Biol. Chem. 277, 17200–17208 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Beaudouin, J., Gerlich, D., Daigle, N., Eils, R. & Ellenberg, J. Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell 108, 83–96 (2002).

    CAS  PubMed  Google Scholar 

  64. Reinsch, S. & Gonczy, P. Mechanisms of nuclear positioning. J. Cell Sci. 111, 2283–2295 (1998).

    CAS  PubMed  Google Scholar 

  65. Grill, S. W., Gonczy, P., Stelzer, E. H. & Hyman, A. Polarity controls forces governing asymmetric spindle positioning in the C. elegans embryo. Nature 409, 630–633 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Rappaport, R. Cytokinesis in Animal Cells (Cambridge Univ. Press, Cambridge, 1996).

    Book  Google Scholar 

  67. Cao, L. G. & Wang, Y. L. Mechanism of the formation of contractile ring in dividing cultured animal cells. I. Recruitment of preexisting actin filaments into the cleavage furrow. J. Cell Biol. 110, 1089–1095 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, Y. L. The mechanism of cytokinesis: reconsideration and reconciliation. Cell Struct. Funct. 26, 633–638 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Bi, G. Q. et al. Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+ regulated exocytosis. J. Cell Biol. 138, 999–1008 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shuster, C. B & Burgess, D. R. Targeted new membrane addition in the cleavage furrow is a late, separate event in cytokinesis. Proc. Natl Acad. Sci. USA 99, 3633–3638 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Robinson, D. N. & Spudich, J. A. Towards a molecular understanding of cytokinesis. Trends Cell Biol. 10, 228–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Somma, M. P., Fasulo, B., Cenci, G., Cundari, E. & Gatti, M. Molecular dissection of cytokinesis by RNA interference in Drosophila cultured cells. Mol. Biol. Cell 13, 2448–2460 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Satterwhite, L. L. & Pollard, T. D. Cytokinesis. Curr. Opin. Cell Biol. 4, 43–52 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Guertin, D. A., Trautmann, S. & McCollum, D. Cytokinesis in eukaryotes. Microbiol. Mol. Biol. Rev. 66, 155–178 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Robinson, D. N., Cavet, G., Warrick, H. M. & Spudich, J. A. Quantitation of the distribution and flux of myosin-II during cytokinesis. BMC Cell Biol. 3, 4–16 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Finger, F. P. & White, J. G. Fusion and fission: membrane trafficking in animal cytokinesis. Cell 108, 727–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, B. & Lee, Y.-R. Kinesin-related proteins in plant cytokinesis. J. Plant Growth Regul. 20, 141–150 (2001).

    Article  CAS  Google Scholar 

  78. Moller-Jensen, J., Jensen, R. B., Lowe, J. & Gerdes, K. Prokaryotic DNA segregation by an actin-like filament. EMBO J. 21, 3119–3127 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Purcell, E. Life at low Reynolds number. Am. J. Phys. 45, 3–11 (1977).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Scholey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholey, J., Brust-Mascher, I. & Mogilner, A. Cell division. Nature 422, 746–752 (2003). https://doi.org/10.1038/nature01599

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01599

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing