Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fidelity in planar cell polarity signalling

Abstract

The polarity of Drosophila wing hairs displays remarkable fidelity. Each of the approximately 30,000 wing epithelial cells constructs an actin-rich prehair that protrudes from its distal vertex and points distally. The distal location and orientation of the hairs is virtually error free, thus forming a nearly perfect parallel array. This process is controlled by the planar cell polarity signalling pathway1,2,3,4. Here we show that interaction between two tiers of the planar cell polarity signalling mechanism results in the observed high fidelity. The first tier, mediated by the cadherin Fat5, dictates global orientation by transducing a directional signal to individual cells. The second tier, orchestrated by the 7-pass transmembrane receptor Frizzled6,7, aligns each cell's polarity with that of its neighbours through the action of an intercellular feedback loop, enabling polarity to propagate from cell to cell8. We show that all cells need not respond correctly to the presumably subtle signal transmitted by Fat. Subsequent action of the Frizzled feedback loop is sufficient to align all the cells cooperatively. This economical system is therefore highly robust, and produces virtually error-free arrays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four-jointed (Fj), Dachsous (Ds) and Fat (Ft) in the pupal wing.
Figure 2: Dachsous and Ft protein localization, and dependence on Fj.
Figure 3: Fat clonal phenotypes indicate that global signalling interacts with the local alignment mechanism to achieve high fidelity.
Figure 4: Loss of Ft in a large region enhances Fz domineering non-autonomy.

Similar content being viewed by others

References

  1. Shulman, J. M., Perrimon, N. & Axelrod, J. D. Frizzled signaling and the developmental control of cell polarity. Trends Genet. 14, 452–458 (1998)

    Article  CAS  PubMed  Google Scholar 

  2. Adler, P. N. Planar signaling and morphogenesis in Drosophila. Dev. Cell 2, 525–535 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Strutt, D. I. The asymmetric subcellular localisation of components of the planar polarity pathway. Semin. Cell Dev. Biol. 13, 225–231 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Tree, D. R. P., Ma, D. & Axelrod, J. D. A three-tiered mechanism for regulation of planar cell polarity. Semin. Cell Dev. Biol. 13, 217–224 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. Mahoney, P. A. et al. The fat tumour suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell 67, 853–868 (1991)

    Article  CAS  PubMed  Google Scholar 

  6. Vinson, C. R. & Adler, P. N. Directional non-cell autonomy and the transmission of polarity information by the frizzled gene of Drosophila. Nature 329, 549–551 (1987)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Vinson, C. R., Conover, S. & Adler, P. N. A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 338, 263–264 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Tree, D. R. P. et al. Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell 109, 371–381 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. Klingensmith, J., Nusse, R. & Perrimon, N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev. 8, 118–130 (1994)

    Article  CAS  PubMed  Google Scholar 

  10. Usui, T. et al. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 98, 585–595 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. Chae, J. et al. The Drosophila tissue polarity gene starry night encodes a member of the protocadherin family. Development 126, 5421–5429 (1999)

    CAS  PubMed  Google Scholar 

  12. Taylor, J., Abramova, N., Charlton, J. & Adler, P. N. Van gogh. A new Drosophila tissue polarity gene. Genetics 150, 199–210 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wolff, T. & Rubin, G. M. Strabismus, a novel gene that regulates tissue polarity and cell fate decisions in Drosophila. Development 125, 1149–1159 (1998)

    CAS  PubMed  Google Scholar 

  14. Gubb, D. et al. The balance between isoforms of the prickle LIM domain protein is critical for planar polarity in Drosophila imaginal discs. Genes Dev. 13, 2315–2327 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Axelrod, J. D. Unipolar membrane association of Dishevelled mediates Frizzled planar cell polarity signaling. Genes Dev. 15, 1182–1187 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Strutt, D. I. Asymmetric localization of Frizzled and the establishment of cell polarity in the Drosophila wing. Mol. Cell 7, 367–375 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Clark, H. F. et al. Dachsous encodes a member of the cadherin superfamily that controls imaginal disc morphogenesis in Drosophila. Development 9, 1530–1542 (1995)

    CAS  Google Scholar 

  18. Villano, J. L. & Katz, F. N. four-jointed is required for intermediate growth in the proximal-distal axis in Drosophila. Development 121, 2767–2777 (1995)

    CAS  PubMed  Google Scholar 

  19. Yang, C., Axelrod, J. D. & Simon, M. A. Regulation of Frizzled by Fat-like cadherins during planar polarity signaling in the Drosophila compound eye. Cell 108, 675–688 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Zeidler, M. P., Perrimon, N. & Strutt, D. I. The four-jointed gene is required in the Drosophila eye for ommatidial polarity specification. Curr. Biol. 9, 1363–1372 (1999)

    Article  CAS  PubMed  Google Scholar 

  21. Fanto, M. & Mlodzik, M. Asymmetric Notch activation specifies photoreceptors R3 and R4 and planar polarity in the Drosophila eye. Nature 397, 523–526 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Cooper, M. T. & Bray, S. J. Frizzled regulation of Notch signalling polarizes cell fate in the Drosophila eye. Nature 397, 526–530 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Adler, P. N., Charlton, J. & Liu, J. Mutations in the cadherin superfamily member gene dachsous cause a tissue polarity phenotype by altering frizzled signaling. Development 125, 959–968 (1998)

    CAS  PubMed  Google Scholar 

  24. Zeidler, M. P., Perrimon, N. & Strutt, D. I. Multiple roles for four-jointed in planar polarity and limb patterning. Dev. Biol. 228, 181–196 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. Casal, J., Struhl, G. & Lawrence, P. Developmental compartments and planar polarity in Drosophila. Curr. Biol. 12, 1189–1198 (2002)

    Article  CAS  PubMed  Google Scholar 

  26. Gubb, D. & Garcia-Bellido, A. A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J. Embryol. Exp. Morphol. 68, 37–57 (1982)

    CAS  PubMed  Google Scholar 

  27. Adler, P. N., Krasnow, R. E. & Liu, J. Tissue polarity points from cells that have higher Frizzled levels towards cells that have lower Frizzled levels. Curr. Biol. 7, 940–949 (1997)

    Article  CAS  PubMed  Google Scholar 

  28. Bryant, P. J., Huettner, B., Held, L. I. Jr, Ryerse, J. & Szidonya, J. Mutations at the fat locus interfere with cell proliferation control and epithelial morphogenesis in Drosophila. Dev. Biol. 129, 541–554 (1988)

    Article  CAS  PubMed  Google Scholar 

  29. Buckles, G. R., Rauskolb, C., Villano, J. L. & Katz, F. N. Four-jointed interacts with dachs, abelson and enabled and feeds back onto the Notch pathway to affect growth and segmentation in the Drosophila leg. Development 128, 3533–3542 (2001)

    CAS  PubMed  Google Scholar 

  30. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Bilder for advice, J. Duffy and the Bloomington stock center for fly strains, and members of the Axelrod laboratory for discussions of the work and comments on the manuscript. This work was supported by the NIH (J.D.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Axelrod.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, D., Yang, Ch., McNeill, H. et al. Fidelity in planar cell polarity signalling. Nature 421, 543–547 (2003). https://doi.org/10.1038/nature01366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01366

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing