Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli

Abstract

Stimulus-induced oscillations occur in visual1,2, olfactory3,4,5,6 and somatosensory7 systems. Several experimental2,3,5 and theoretical8,9,10,11,12,13 studies have shown how such oscillations can be generated by inhibitory connections between neurons. But the effects of realistic spatiotemporal sensory input on oscillatory network dynamics and the overall functional roles of such oscillations in sensory processing are poorly understood. Weakly electric fish must detect electric field modulations produced by both prey (spatially localized)14 and communication (spatially diffuse)15 signals. Here we show, through in vivo recordings, that sensory pyramidal neurons in these animals produce an oscillatory response to communication-like stimuli, but not to prey-like stimuli. On the basis of well-characterized circuitry16, we construct a network model of pyramidal neurons that predicts that diffuse delayed inhibitory feedback is required to achieve oscillatory behaviour only in response to communication-like stimuli. This prediction is experimentally verified by reversible blockade of feedback inhibition that removes oscillatory behaviour in the presence of communication-like stimuli. Our results show that a sensory system can use inhibitory feedback as a mechanism to ‘toggle’ between oscillatory and non-oscillatory firing states, each associated with a naturalistic stimulus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ELL pyramidal neurons show differential responses to local (prey-like) and global (communication-like) stimuli (n = 15).
Figure 2: ELL neural network simulations involving global inhibitory feedback show differential responses to local and global stimuli.
Figure 3: Simulated asynchronous firing and synchronized oscillations during one presentation of a local or global stimulus, respectively.
Figure 4: Blockade of the inhibitory component of the StF pathway.

Similar content being viewed by others

References

  1. Gray, C. & Singer, W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl Acad. Sci. USA 86, 1698–1702 (1989)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sillito, A. M., Jones, H. E., Gerstein, G. L. & West, D. C. Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369, 479–482 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. MacLeod, K. & Laurent, G. Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science 274, 976–979 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kashiwadani, H., Sasaki, Y. F., Uchida, N. & Kensaku, M. Synchronized oscillatory discharge of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J. Neurophysiol. 82, 1786–1792 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. Stopfer, M., Bhagavan, S., Smith, B. H. & Laurent, G. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390, 70–74 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Friedrich, R. W. & Laurent, G. Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291, 889–894 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ahissar, E. & Vaadia, E. Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis. Proc. Natl Acad. Sci. USA 87, 8935–8939 (1992)

    Article  ADS  Google Scholar 

  8. Destexhe, A., Contreras, D. & Steriade, M. Mechanisms underlying the synchronization action of corticothalamic feedback through inhibition of thalamic relay cells. J. Neurophysiol. 79, 999–1016 (1998)

    Article  CAS  PubMed  Google Scholar 

  9. Bressloff, P. C. & Coombes, S. Dynamics of strongly coupled spiking neurons. Neural Comput. 12, 91–129 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Ernst, U., Pawelzik, K. & Geisel, T. Synchronization induced by temporal delays in pulse-coupled oscillators. Phys. Rev. Lett. 74, 1570–1573 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Wang, X.-J. & Rinzel, J. Spindle rhythmicity in the reticularis thalami nucleus: synchronization among mutually inhibitory neurons. Neuroscience 53, 899–904 (1993)

    Article  CAS  PubMed  Google Scholar 

  12. van Vreeswijk, C. & Hansel, D. Patterns of synchrony in neural networks with spike adaptation. Neural Comput. 13, 959–992 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Paulis, Q., Baker, N. B. & Olivier, E. Emergent oscillations in a realistic network: the role of inhibition and the effect of the spatiotemporal distribution of input. J. Comput. Neurosci. 6, 27–48 (1999)

    Article  Google Scholar 

  14. Nelson, M. E. & MacIver, M. A. Prey capture in the weakly electric fish Apteronotus leptorhynchus: sensory acquisition strategies and electrosensory consequences. J. Exp. Biol. 202, 1195–1203 (1999)

    CAS  PubMed  Google Scholar 

  15. Metzner, W. Neural circuitry for communication and jamming avoidance in gymnotiform electric fish. J. Exp. Biol. 202, 1365–1375 (1999)

    CAS  PubMed  Google Scholar 

  16. Berman, N. J. & Maler, L. Neural architecture of the electrosensory lateral line lobe: adaptations for coincidence detection, a sensory searchlight and frequency-dependent adaptive filtering. J. Exp. Biol. 202, 1243–1253 (1999)

    CAS  PubMed  Google Scholar 

  17. Wessel, R., Koch, C. & Gabbiani, F. Coding of time-varying electric field amplitude modulations in a wave-type electric fish. J. Neurophysiol. 75, 2280–2293 (1996)

    Article  CAS  PubMed  Google Scholar 

  18. Maler, L., Sas, E. K. & Rogers, J. The cytology of the posterior lateral line lobe of high frequency weakly electric fish (Gymnotoidei): differentiation and synaptic specificity in a simple cortex. J. Comp. Neurol. 195, 87–139 (1981)

    Article  CAS  PubMed  Google Scholar 

  19. Dayan, P. & Abbott, L. F. Theoretical Neuroscience (MIT Press, Cambridge, Massachusetts, 2001)

    MATH  Google Scholar 

  20. Bastian, J. & Nguyenkim, J. Dendritic modulation of burst-like firing in sensory neurons. J. Neurophysiol. 85, 10–22 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Maler, L. & Mugnaini, E. Correlating γ-aminobutyric acidergic circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish. J. Comp. Neurol. 345, 224–252 (1994)

    Article  CAS  PubMed  Google Scholar 

  22. Berman, N. J., Plant, J., Turner, R. & Maler, L. Excitatory amino acid transmission at a feedback pathway in the electrosensory system. J. Neurophysiol. 78, 1869–1881 (1997)

    Article  CAS  PubMed  Google Scholar 

  23. Berman, N. J. & Maler, L. Interaction of GABAB-mediated inhibition with voltage-gated currents of pyramidal cells: computational mechanism of a sensory searchlight. J. Neurophysiol. 80, 3197–3213 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. Glass, L. & Mackey, M. C. From Clocks to Chaos (Princeton Univ. Press, Princeton, New Jersey, 1988)

    MATH  Google Scholar 

  25. Doiron, B., Laing, C., Longtin, A. & Maler, L. Ghostbursting: a novel neuronal burst mechanism. J. Comput. Neurosci. 12, 5–25 (2002)

    Article  PubMed  Google Scholar 

  26. Lemon, N. & Turner, R. W. Conditional spike backpropagation generates burst discharge in a sensory neuron. J. Neurophysiol. 84, 1519–1530 (2000)

    Article  CAS  PubMed  Google Scholar 

  27. Bastian, J., Chacron, M. J. & Maler, L. Receptive field organization determines pyramidal cell stimulus encoding capability and spatial stimulus selectivity. J. Neurosci. 22, 4577–4590 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gabbiani, F., Metzner, W., Wessel, R. & Koch, C. From stimulus encoding to feature extraction in weakly electric fish. Nature 384, 564–567 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Contreras, D., Destexhe, A., Sejnowski, T. J. & Steriade, M. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274, 771–774 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Kloeden, P. E. & Platen, E. Numerical Solutions to Stochastic Differential Equations (Springer, Berlin, 1992)

    Book  Google Scholar 

Download references

Acknowledgements

We thank J. Lewis, C. Laing, R. W. Turner and M. Higley for reading the manuscript. Funding was provided by the National Science and Engineering Research Council (B.D., M.J.C., A.L.), the Canadian Institutes of Health Research (A.L., L.M.) and the National Institutes of Health (J.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent Doiron.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doiron, B., Chacron, M., Maler, L. et al. Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli. Nature 421, 539–543 (2003). https://doi.org/10.1038/nature01360

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01360

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing