Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An early lunar core dynamo driven by thermochemical mantle convection

Abstract

Although the Moon currently has no internally generated magnetic field, palaeomagnetic data, combined with radiometric ages of Apollo samples, provide evidence for such a magnetic field from 3.9 to 3.6 billion years (Gyr) ago1, possibly owing to an ancient lunar dynamo1,2. But the presence of a lunar dynamo during this time period is difficult to explain1,2,3,4, because thermal evolution models for the Moon5 yield insufficient core heat flux to power a dynamo after 4.2 Gyr ago. Here we show that a transient increase in core heat flux after an overturn of an initially stratified lunar mantle might explain the existence and timing of an early lunar dynamo. Using a three-dimensional spherical convection model6, we show that a dense layer, enriched in radioactive elements (a ‘thermal blanket’), at the base of the lunar mantle can initially prevent core cooling, thereby inhibiting core convection and magnetic field generation. Subsequent radioactive heating progressively increases the buoyancy of the thermal blanket, ultimately causing it to rise back into the mantle. The removal of the thermal blanket, proposed to explain the eruption of thorium- and titanium-rich lunar mare basalts7, plausibly results in a core heat flux sufficient to power a short-lived lunar dynamo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermochemical evolution models in stable (ac) and unstable (dh) thermal blanket regimes as seen in temperature (a, d, g), composition (b, e, h) and core heat flux (c, f) compared with palaeomagnetic intensity data (i).

Similar content being viewed by others

References

  1. Cisowski, S. M., Collinson, D. W., Runcorn, S. K. & Stephenson, A. A review of lunar paleointensity data and implications for the origin of lunar magnetism. J. Geophys. Res. 88, A691–A704 (1983)

    Article  Google Scholar 

  2. Collinson, D. W. Magnetism of the Moon—A lunar core dynamo or impact magnetization? Surv. Geophys. 14, 89–118 (1993)

    Article  ADS  Google Scholar 

  3. Stevenson, D. J. Planetary magnetic fields. Rep. Prog. Phys. 46, 555–620 (1983)

    Article  ADS  CAS  Google Scholar 

  4. Runcorn, S. K. The formation of the lunar core. Geochim. Cosmochim. Acta 60, 1205–1208 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Konrad, W. & Spohn, T. Thermal history of the Moon: Implications for an early core dynamo and post-accretional magmatism. Adv. Space Res. 19, 1511–1521 (1997)

    Article  ADS  Google Scholar 

  6. Baumgardner, J. R. Three dimensional treatment of convective flow in the Earth's mantle. J. Stat. Phys. 39, 501–511 (1985)

    Article  ADS  Google Scholar 

  7. Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical evolution of the Moon's interior: Implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134, 501–514 (1995)

    Article  ADS  CAS  Google Scholar 

  8. Warren, P. H. The magma ocean concept and lunar evolution. Annu. Rev. Earth Planet. Sci. 13, 201–240 (1985)

    Article  ADS  CAS  Google Scholar 

  9. Jellinek, A. M., Kerr, R. C. & Griffiths, R. W. Mixing and compositional stratification produced by natural convection. 1. Experiments and their application to Earth's core and mantle. J. Geophys. Res. 104, 7183–7202 (1999)

    Article  ADS  Google Scholar 

  10. Zhong, S., Parmentier, E. M. & Zuber, M. T. A dynamic origin for the global asymmetry of lunar mare basalts. Earth Planet. Sci. Lett. 177, 131–140 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Wieczorek, M. A. & Phillips, R. J. The ‘Procellarum KREEP Terrane’: Implications for mare volcanism and lunar evolution. J. Geophys. Res. 105, 20417–20430 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Stevenson, D. J., Spohn, T. & Schubert, G. Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466–489 (1983)

    Article  ADS  Google Scholar 

  13. Stacey, F. D. & Loper, D. E. Thermal histories of the core and mantle. Phys. Earth Planet. Inter. 36, 99–115 (1984)

    Article  ADS  Google Scholar 

  14. Buffett, B. A., Huppert, H. E., Lister, J. R. & Woods, A. W. On the thermal evolution of the Earth's core. J. Geophys. Res. 101, 7989–8006 (1996)

    Article  ADS  Google Scholar 

  15. Stevenson, D. J. Mars' core and magnetism. Nature 412, 214–219 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Roberts, P. H. & Soward, A. M. Dynamo theory. Annu. Rev. Fluid Mech. 24, 459–512 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  17. Williams, J. G., Boggs, D. H., Yoder, C. F. & Ratcliff, J. T. Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933–27968 (2001)

    Article  ADS  Google Scholar 

  18. Bunge, H.-P. & Baumgardner, J. R. Mantle convection modeling on parallel virtual machines. Comput. Phys. 9, 207–215 (1995)

    Article  ADS  Google Scholar 

  19. Yang, W.-S. & Baumgardner, J. R. A matrix-dependent transfer multigrid method for strongly variable viscosity infinite Prandtl number thermal convection. Geophys. Astrophys. Fluid 92, 151–195 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. Christensen, U. R. Heat transport by variable viscosity convection and implications for the Earth's thermal evolution. Phys. Earth Planet. Inter. 35, 264–282 (1984)

    Article  ADS  Google Scholar 

  21. Moresi, L.-N. & Solomatov, V. S. Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7, 2154–2162 (1995)

    Article  ADS  Google Scholar 

  22. Jellinek, A. M., Lenardic, A. & Manga, M. The influence of interior mantle temperature on the structure of plumes: Heads for Venus, tails for Earth. Geophys. Res. Lett. 29, doi:10.1029/2001GL014624 (2002)

  23. Davaille, A. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999)

    Article  ADS  CAS  Google Scholar 

  24. Gonnermann, H. M., Manga, M. & Jellinek, A. M. Dynamics and longevity of an initially stratified mantle. Geophys. Res. Lett. 29, doi:10.1029/2002GL01485 (2002)

  25. Hood, L. L., Mitchell, D. L., Lin, R. P., Acuna, M. H. & Binder, A. B. Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector magnetometer data. Geophys. Res. Lett. 26, 2327–2330 (1999)

    Article  ADS  Google Scholar 

  26. Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: Surface expressions and crust–mantle origins. J. Geophys. Res. 105, 4197–4216 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Haskin, L. A., Gillis, J. J., Korotev, R. L. & Jolliff, B. L. The materials of the lunar Procellarum KREEP Terrane: A synthesis of data from geomorphological mapping, remote sensing, and sample analyses. J. Geophys. Res. 105, 20403–20415 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Delano, J. Pristine lunar glasses: Criteria, data and implications. J. Geophys. Res. 91, 201–213 (1986)

    Article  ADS  Google Scholar 

  29. Hess, P. C. On the source regions for mare picrite glasses. J. Geophys. Res. 105, 4347–4360 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Anderson, O. L. The Gruneisen parameter for iron at outer core conditions and the resulting conductive heat and power in the core. Phys. Earth Planet. Inter. 109, 179–197 (1998)

    Article  ADS  CAS  Google Scholar 

  31. Stacey, F. D. & Anderson, O. L. Electrical and thermal conductivities of Fe-Ni-Si alloy under core conditions. Phys. Earth Planet. Inter. 124, 153–162 (2001)

    Article  ADS  CAS  Google Scholar 

  32. Stegman, D. R., Richards, M. A. & Baumgardner, J. R. Effects of depth dependent viscosity and plate motions on maintaining a relatively uniform MORB reservoir in whole mantle flow. J. Geophys. Res. 107, doi:10.1029/2001JB000192 (2002)

  33. Tackley, P. J. Effects of strongly variable viscosity on 3-dimensional mantle convection. J. Geophys. Res. 101, 3311–3332 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Buffett for helpful discussions; C. Johnson, R. Jeanloz, M. Manga and H.-P. Bunge for comments; and D. Stevenson and M. Zuber for reviews that improved this manuscript. We dedicate this work to the memory of our co-author Stephen Zatman, who inspired us by his interest in this subject. This work was supported by IGPP LANL, NASA CT project, the National Science Foundation, and the Miller Institute for Basic Research in Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave R. Stegman.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stegman, D., Jellinek, A., Zatman, S. et al. An early lunar core dynamo driven by thermochemical mantle convection. Nature 421, 143–146 (2003). https://doi.org/10.1038/nature01267

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01267

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing