Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The morphogenesis of feathers

Abstract

Feathers are highly ordered, hierarchical branched structures1,2 that confer birds with the ability of flight3,4,5. Discoveries of fossilized dinosaurs in China bearing ‘feather-like’ structures have prompted interest in the origin and evolution of feathers6,7,8,9,10,11,12,13,14. However, there is uncertainty about whether the irregularly branched integumentary fibres on dinosaurs such as Sinornithosaurus are truly feathers11, and whether an integumentary appendage with a major central shaft and notched edges is a non-avian feather or a proto-feather8,9,10. Here, we use a developmental approach to analyse molecular mechanisms in feather-branching morphogenesis. We have used the replication-competent avian sarcoma retrovirus15 to deliver exogenous genes to regenerating flight feather follicles of chickens. We show that the antagonistic balance between noggin and bone morphogenetic protein 4 (BMP4) has a critical role in feather branching, with BMP4 promoting rachis formation and barb fusion, and noggin enhancing rachis and barb branching. Furthermore, we show that sonic hedgehog (Shh) is essential for inducing apoptosis of the marginal plate epithelia, which results in spaces between barbs. Our analyses identify the molecular pathways underlying the topological transformation of feathers from cylindrical epithelia to the hierarchical branched structures, and provide insights on the possible developmental mechanisms in the evolution of feather forms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Feather-branching morphogenesis and gene expression.
Figure 2: Phenotypic changes in feathers regenerated from follicles injected with RCAS–noggin, RCAS–BMP4 and RCAS–BMP2, respectively.
Figure 3: Analyses of feathers injected with RCAS–noggin, RCAS–BMP4 and RCAS–BMP2, respectively.
Figure 4: The role of Shh in barb formation.
Figure 5: Models of feather branching and evolution of feather forms.

Similar content being viewed by others

References

  1. Lucas, A. M. & Stettenheim, P. R. (eds) Avian Anatomy – Integument. Agricultural Handbook 362: Agricultural Research Services (US Department of Agriculture, Washington DC, 1972)

  2. Chuong, C.-M. The making of a feather: Homeoproteins, retinoids and adhesion molecules. BioEssays 15, 513–521 (1993)

    Article  CAS  Google Scholar 

  3. Feduccia, A. The Origin and Evolution of Birds 2nd edn (Yale Univ. Press, New Haven, Connecticut, 1999)

    Google Scholar 

  4. Chatterjee, S. The Rise of Birds (John Hopkins Univ. Press, Baltimore, Maryland, 1997)

    Google Scholar 

  5. Regal, P. J. The evolutionary origin of feathers. Q. Rev. Biol. 50, 35–66 (1975)

    CAS  PubMed  Google Scholar 

  6. Chen, P. J., Dong, Z. M. & Shen, S. N. An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature 391, 147–152 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Xu, X., Tang, Z. L. & Wang, X. L. A therizinorsauroid dinosaur with integumentary structures from China. Nature 399, 350–354 (1999)

    Article  ADS  CAS  Google Scholar 

  8. Jones, T. D. et al. Nonavian feathers in a late Triassic archosaur. Science 288, 2202–2205 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Prum, R. O. Longisquama fossil and feather morphology. Science 291, 1899–1902 (2001)

    Article  CAS  Google Scholar 

  10. Zhang, F. & Zhou, Z. A primitive enantiornithine bird and the origin of feathers. Science 290, 1955–1959 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Xu, X., Zhou, Z. & Prum, R. O. Branched integumental structures in Sinornithosaurus and the origin of feathers. Nature 410, 200–204 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Ji, Q., Currie, P. J., Norell, M. A. & Ji, S. A. Two feathered dinosaurs from northeast China. Nature 393, 753–761 (1998)

    Article  ADS  Google Scholar 

  13. Ji, Q., Norell, M. A., Gao, K. Q., Ji, S. A. & Ren, D. The distribution of integumentary structures in a feathered dinosaur. Nature 410, 1084–1088 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Norell, M. et al. Modern feathers on a non-avian dinosaur. Nature 416, 36–37 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Morgan, B. A. & Fekete, D. M. Manipulating gene expression with replication-competent retroviruses. Methods Cell Biol. 51, 185–218 (1996)

    Article  CAS  Google Scholar 

  16. Prum, R. O. Development and evolutionary origin of feathers. J. Exp. Zool. 285, 291–306 (1999)

    Article  CAS  Google Scholar 

  17. Prum, R. O. & Williamson, S. Theory of the growth and evolution of feather shape. J. Exp. Zool. 291, 30–57 (2001)

    Article  CAS  Google Scholar 

  18. Chuong, C.-M., Chodankar, R., Widelitz, R. B. & Jiang, T.-X. Evo-devo of feathers and scales: building complex epithelial appendages. Curr. Opin. Genet. Dev. 10, 449–456 (2000)

    Article  CAS  Google Scholar 

  19. Chuong, C.-M. et al. Dinosaur's feather and Chicken's tooth? Tissue engineering of the integument. John Ebbling lecture. Eur. J. Dermatology 11, 286–292 (2001)

    CAS  Google Scholar 

  20. Chuong, C.-M. (ed.) Molecular Basis of Epithelial Appendage Morphogenesis (Landes Bioscience, Austin, 1998)

  21. Hogan, B. L. M. Morphogenesis. Cell 96, 225–233 (1999)

    Article  CAS  Google Scholar 

  22. Jung, H.-S. et al. Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Dev. Biol. 196, 11–23 (1998)

    Article  CAS  Google Scholar 

  23. Dudley, A. T. & Tabin, C. J. Constructive antagonism in limb development. Curr. Opin. Genet. Dev. 10, 387–392 (2000)

    Article  CAS  Google Scholar 

  24. Jiang, T.-X., Jung, H.-S., Widelitz, R. B. & Chuong, C.-M. Self organization of periodic patters by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development 126, 4997–5009 (1999)

    CAS  PubMed  Google Scholar 

  25. Harris, M. P., Fallon, J. F. & Prum, R. O. Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers. J. Exp. Zool. 294, 160–176 (2002)

    Article  CAS  Google Scholar 

  26. Ting-Berreth, S. A. & Chuong, C.-M. Sonic hedgehog in feather morphogenesis: induction of mesenchymal condensation and association with cell death. Dev. Dyn. 207, 157–170 (1996)

    Article  CAS  Google Scholar 

  27. Cooper, M. K., Porter, J. A., Young, K. E. & Beachy, P. A. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280, 1603–1607 (1998)

    Article  ADS  CAS  Google Scholar 

  28. Calabretta, R., Nolfi, S., Parisi, D. & Wagner, G. P. Duplication of modules facilitates the evolution of functional specialization. Artificial Life 6, 69–84 (2000)

    Article  CAS  Google Scholar 

  29. Chuong, C.-M. & Edelman, G. M. Expression of cell adhesion molecules in embryonic induction. II. Morphogenesis of adult feathers. J. Cell Biol. 101, 1027–1043 (1985)

    Article  CAS  Google Scholar 

  30. Gill, F. B. Ornithology, 2nd edn (Freeman, New York, 1994)

    Google Scholar 

Download references

Acknowledgements

We thank M. Ramos for help in preparing the manuscript; and R. Prum for critical comments on the manuscript. Figure 1b is modified from ref. 1. This work is supported by grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases, USA, and the National Science Foundation to C.-M.C., and a National Cancer Institute grant to R.B.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Ming Chuong.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, M., Wu, P., Widelitz, R. et al. The morphogenesis of feathers. Nature 420, 308–312 (2002). https://doi.org/10.1038/nature01196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01196

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing