Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-power terahertz radiation from relativistic electrons

Abstract

Terahertz (THz) radiation, which lies in the far-infrared region, is at the interface of electronics and photonics. Narrow-band THz radiation can be produced by free-electron lasers1 and fast diodes2,3. Broadband THz radiation can be produced by thermal sources and, more recently, by table-top laser-driven sources4,5,6 and by short electron bunches in accelerators7, but so far only with low power. Here we report calculations and measurements that confirm the production of high-power broadband THz radiation from subpicosecond electron bunches in an accelerator. The average power is nearly 20 watts, several orders of magnitude higher than any existing source, which could enable various new applications. In particular, many materials have distinct absorptive and dispersive properties in this spectral range, so that THz imaging could reveal interesting features. For example, it would be possible to image the distribution of specific proteins or water in tissue, or buried metal layers in semiconductors8,9; the present source would allow full-field, real-time capture of such images. High peak and average power THz sources are also critical in driving new nonlinear phenomena and for pump–probe studies of dynamical properties of materials10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison between coherent THz radiation generated by an 80-MHz conventional laser-driven THz source (a) and the relativistic source described here (b).
Figure 2: Calculations of the average power emitted by a 10-mm2 thermal source at 2,000 K (dashed line), the NSLS VUV ring at Brookhaven National Laboratory (dotted line), and the Jefferson Laboratory (JLab) ERL (solid line).
Figure 3: Comparison between measured (solid line) and calculated (dashed line) THz spectral intensity.
Figure 4: Measured THz intensity as a function of beam current (square symbols), showing the quadratic dependence expected for coherent emission (solid line).

Similar content being viewed by others

References

  1. Ramian, G. The new UCSB free-electron lasers. Nucl. Instrum. Methods Phys. Res. A 318, 225–229 (1992)

    Article  ADS  Google Scholar 

  2. Porterfield, D. W., Crowe, T. W., Bradley, R. F. & Erickson, N. R. A high-power, fixed-tuned, millimeter-wave balanced frequency doubler. IEEE Trans. Microwave Theory Techn. MTT-47, 419–425 (1999)

    Article  ADS  Google Scholar 

  3. Siegel, P. H. Terahertz technology. IEEE Trans. Microwave Theory Techn. MTT-50, 910–928 (2002)

    Article  ADS  Google Scholar 

  4. Auston, D. H., Cheung, K. P., Valdmanis, J. A. & Kleinman, D. A. Cherenkov radiation from femtosecond optical pulses in electrooptic media. Phys. Rev. Lett. 53, 1555–1558 (1984)

    Article  ADS  CAS  Google Scholar 

  5. Bonvalet, A., Joffre, M., Martin, J. L. & Migus, A. Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate. Appl. Phys. Lett. 67, 2907–2909 (1995)

    Article  ADS  CAS  Google Scholar 

  6. You, D., Jones, R. R., Bucksbaum, P. H. & Dykaar, D. R. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Opt. Lett. 18, 290–292 (1993)

    Article  ADS  CAS  Google Scholar 

  7. Nakazato, T. et al. Observation of coherent synchrotron radiation. Phys. Rev. Lett. 63, 1245–1248 (1989)

    Article  ADS  CAS  Google Scholar 

  8. Chen, Q. & Zhang, X.-C. Ultrafast Laser Technology and Applications (eds Fermann, M. E., Galvanauskas, A. & Sucha, G.) 521–572 (Marcel Dekker, New York, 2001)

    Google Scholar 

  9. Zhang, X.-C. in Compound Optoelectronic Materials and Devices 69–80 (1995)

    Google Scholar 

  10. Cole, B. E., Williams, J. B. & King, B. T. Coherent manipulation of semiconductor quantum bits with terahertz radiation. Nature 410, 60–63 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron–hole plasma. Nature 414, 286–289 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Winnerl, S. et al. Frequency doubling and tripling of terahertz radiation in a GaAs/AlAs superlattice due to frequency modulation of Bloch oscillations. Appl. Phys. Lett. 77, 1259–1261 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Neil, G. R. et al. Sustained kilowatt lasing in a free-electron laser with same cell energy recovery. Phys. Rev. Lett. 84, 662–665 (2000)

    Article  ADS  CAS  Google Scholar 

  14. Nodvick, S. & Saxon, D. S. Suppression of coherent radiation by electrons in a synchrotron. Phys. Rev. 96, 180–184 (1954)

    Article  ADS  Google Scholar 

  15. Hirschmugl, C. J., Sagurton, M. & Williams, G. P. Multiparticle coherence calculations for synchrotron radiation emission. Phys. Rev. A 44, 1316–1320 (1991)

    Article  ADS  CAS  Google Scholar 

  16. Happek, U., Blum, E. B. & Sievers, A. J. Observation of coherent transition radiation. Phys. Rev. Lett. 67, 2962–2965 (1991)

    Article  ADS  CAS  Google Scholar 

  17. Wang, D. X., Krafft, G. A. & Sinclair, C. K. Measurement of femtosecond electron bunches using a rf zero-phasing method. Phys. Rev. E 57, 2283–2286 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Lihn, H.-C., Kung, P., Settakorn, C. & Wiedemann, H. Observation of stimulated transition radiation. Phys. Rev. Lett. 76, 4163–4166 (1996)

    Article  ADS  CAS  Google Scholar 

  19. Doria, A., Bartolini, R., Feinstein, J., Gallerano, G. P. & Pantell, R. H. Coherent emission and gain from a bunched electron beam. IEEE J. Quant. Electron. QE-29, 1428–1436 (1993)

    Article  ADS  Google Scholar 

  20. Jaroszynsky, D. A., Bakker, R. J., van der Geer, C. A. J., Oepts, D. & van Amersfoort, P. W. Coherent start-up of an infrared free electron laser. Phys. Rev. Lett. 71, 3798–3801 (1993)

    Article  ADS  Google Scholar 

  21. Berryman, K. W., Crosson, E. R., Ricci, K. N. & Smith, T. I. Coherent spontaneous radiation from highly bunched electron beams. Nucl. Instrum. Methods Phys. Res. A 375, 526–529 (1996)

    Article  ADS  CAS  Google Scholar 

  22. Tamada, H., Tsutsui, H., Shimoda, K. & Mima, K. Features of the compact photon storage ring. Nucl. Instrum. Methods A 331, 566–571 (1993)

    Article  ADS  Google Scholar 

  23. Andersson, A., Johnson, M. S. & Nelander, B. Coherent synchrotron radiation in the far infrared from a 1-mm electron bunch. Opt. Eng. 39, 3099–3105 (2000)

    Article  ADS  Google Scholar 

  24. Arp, U. et al. Spontaneous coherent microwave emission and the sawtooth instability in a compact storage ring. Phys. Rev. Spec. Topics Accelerat. Beams 4, 54401 (2001)

    Article  ADS  Google Scholar 

  25. Carr, G. L. et al. Observation of coherent synchrotron radiation from the NSLS VUV ring. Nucl. Instrum. Methods A 463, 387–392 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Giovenale, E. et al. Longitudinal phase-space manipulation: a device to enhance the coherent emission from an RF modulated electron beam. Nucl. Instrum. Methods 437, 128–133 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Yu, L. H., Johnson, E., Li, D. & Umstadter, D. Femtosecond free-electron laser by chirped pulse amplification. Phys. Rev. E 49, 4480–4486 (1994)

    Article  ADS  CAS  Google Scholar 

  28. Jackson, J. D. Classical Electrodynamics (Wiley, New York, 1975)

    MATH  Google Scholar 

  29. Hulbert, S. L. & Williams, G. P. Handbook of Optics: Classical, Vision, and X-Ray Optics Vol. III, Synchrotron Radiation Sources, 2nd edn (eds Bass, M., Enoch, J. M., Van Stryland, E. W. & Wolfe, W. L.) 32.1–32.20 (McGraw-Hill, New York, 2001)

    Google Scholar 

  30. Moeller, K. D. et al. . Appl. Opt. 30, 4297–4301 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for their help and support, which were essential for these experiments. This work was supported primarily by the US Department of Energy. The Jefferson Laboratory FEL is supported by the Office of Naval Research, the Air Force Research Laboratory, the Commonwealth of Virginia and the Laser Processing Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Williams.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carr, G., Martin, M., McKinney, W. et al. High-power terahertz radiation from relativistic electrons. Nature 420, 153–156 (2002). https://doi.org/10.1038/nature01175

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01175

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing