Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum

A Corrigendum to this article was published on 03 October 2002

Abstract

The Malaria's Eve hypothesis, proposing a severe recent population bottleneck (about 3,000–5,000 years ago) of the human malaria parasite Plasmodium falciparum, has prompted a debate about the origin and evolution of the parasite1,2,3,4,5,6. The hypothesis implies that the parasite population is relatively homogeneous, favouring malaria control measures. Other studies, however, suggested an ancient origin and large effective population size5,7,8,9,10. To test the hypothesis, we analysed single nucleotide polymorphisms (SNPs) from 204 genes on chromosome 3 of P. falciparum. We have identified 403 polymorphic sites, including 238 SNPs and 165 microsatellites, from five parasite clones, establishing chromosome-wide haplotypes and a dense map with one polymorphic marker per 2.3 kilobases. On the basis of synonymous SNPs and non-coding SNPs, we estimate the time to the most recent common ancestor to be 100,000–180,000 years, significantly older than the proposed bottleneck. Our estimated divergence time coincides approximately with the start of human population expansion11, and is consistent with a genetically complex organism able to evade host immunity and other antimalarial efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequency and distribution of SNPs and MS in 204 genes on chromosome 3 of P. falciparum.
Figure 2: A maximum-likelihood tree based on concatenated DNA sequences of the 204 genes.

Similar content being viewed by others

References

  1. Rich, S. M., Licht, M. C., Hudson, R. R. & Ayala, F. J. Malaria's Eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 95, 4425–4430 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Volkman, S. K. et al. Recent origin of Plasmodium falciparum from a single progenitor. Science 293, 482–484 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Hughes, A. L. & Verra, F. Ancient polymorphism and the hypothesis of a recent bottleneck in the malaria parasite Plasmodium falciparum. Genetics 150, 511–513 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hey, J. Parasite populations: the puzzle of Plasmodium. Curr. Biol. 9, R565–R567 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. Hughes, A. L. & Verra, F. Very large long-term effective population size in the virulent human malaria parasite Plasmodium falciparum. Proc. R. Soc. Lond. B 268, 1855–1860 (2001)

    Article  CAS  Google Scholar 

  6. Saul, A. Circumsporozoite polymorphisms, silent mutations and the evolution of Plasmodium falciparum. Parasitol. Today 15, 38–40 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. Escalante, A. A., Barrio, E. & Ayala, F. J. Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Mol. Biol. Evol. 12, 616–626 (1995)

    CAS  PubMed  Google Scholar 

  8. Walliker, D., Babiker, H. & Ranford-Cartwright, L. in Malaria: Parasite Biology, Pathogenesis, and Protection (ed. Sherman, I. W.) 235–252 (American Society for Microbiology, Washington DC, 1998)

    Google Scholar 

  9. Conway, D. J. et al. High recombination rate in natural populations of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 96, 4506–4511 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anderson, T. J. et al. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol. Biol. Evol. 17, 1467–1482 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Templeton, A. Out of Africa again and again. Nature 416, 45–51 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Gardner, M. J. et al. Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science 282, 1126–1132 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Bowman, S. et al. The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum. Nature 400, 532–538 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Graur, D. & Li, W.-h. Fundamentals of Molecular Evolution (Sinauer, Sunderland, Massachusetts, 2000)

    Google Scholar 

  16. Su, X. et al. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science 286, 1351–1353 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997)

    CAS  PubMed  Google Scholar 

  18. Hughes, A. L. Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions. Genetics 127, 345–353 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Musto, H., Romero, H., Zavala, A., Jabbari, K. & Bernardi, G. Synonymous codon choices in the extremely GC-poor genome of Plasmodium falciparum: compositional constraints and translational selection. J. Mol. Evol. 49, 27–35 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Pizzi, E. & Frontali, C. Low-complexity regions in Plasmodium falciparum proteins. Genome Res. 11, 218–229 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wootton, J. C. Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput. Chem. 18, 269–285 (1994)

    Article  CAS  PubMed  Google Scholar 

  22. Wootton, J. C. et al. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature, 418, 320–323

  23. Louis, A., Ollivier, E., Aude, J. C. & Risler, J. L. Massive sequence comparisons as a help in annotating genomic sequences. Genome Res. 11, 1296–1303 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Su, X., Kirkman, L. A., Fujioka, H. & Wellems, T. E. Complex polymorphisms in an approximately 330 kDa protein are linked to chloroquine-resistant P. falciparum in Southeast Asia and Africa. Cell 91, 593–603 (1997)

    Article  CAS  PubMed  Google Scholar 

  25. Rozas, J. & Rozas, R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15, 174–175 (1999)

    Article  CAS  PubMed  Google Scholar 

  26. Wootton, J. C. & Federhen, S. Statistics of local complexity in amino acid sequence databases. Comput. Chem. 17, 149–163 (1993)

    Article  CAS  Google Scholar 

  27. Yu, A. et al. Comparison of human genetic and sequence-based physical maps. Nature 409, 951–953 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Swofford, D. L. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4 (Sinauer Associates, Sunderland, Massachusetts, 2000).

  29. Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Anderson, A. Saul, K. Hayton and J. Ribeiro for critical reading of the manuscript, and B. Marshall for editorial assistance. We also thank J. Wootton for supporting O.H.B. This work was partially supported by the NIH (W.-H.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-zhuan Su.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, J., Duan, J., Makova, K. et al. Chromosome-wide SNPs reveal an ancient origin for Plasmodium falciparum. Nature 418, 323–324 (2002). https://doi.org/10.1038/nature00836

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00836

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing