Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification

Abstract

After gene rearrangement, immunoglobulin variable genes are diversified by somatic hypermutation or gene conversion, whereas the constant region is altered by class-switch recombination. All three processes depend on activation-induced cytidine deaminase (AID)1,2,3,4,5,6,7, a B-cell-specific protein that has been proposed (because of sequence homology1) to function by RNA editing. But indications that the three gene diversification processes might be initiated by a common type of DNA lesion8,9,10,11, together with the proposal that there is a first phase of hypermutation that targets dC/dG12, suggested to us that AID may function directly at dC/dG pairs. Here we show that expression of AID in Escherichia coli gives a mutator phenotype that yields nucleotide transitions at dC/dG in a context-dependent manner. Mutation triggered by AID is enhanced by a deficiency of uracil-DNA glycosylase, which indicates that AID functions by deaminating dC residues in DNA. We propose that diversification of functional immunoglobulin genes is triggered by AID-mediated deamination of dC residues in the immunoglobulin locus with the outcome—that is, hypermutation phases 1 and 2, gene conversion or switch recombination—dependent on the way in which the initiating dU/dG lesion is resolved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA deamination model of immunoglobulin gene diversification.
Figure 2: Expression of AID in E. coli yields a mutator phenotype that is enhanced by UDG deficiency.
Figure 3: Nature of the AID-induced mutations in an UDG-positive (ung+) background.
Figure 4: Nature of the AID-induced rpoB mutations in an UDG-deficient (ung-1) background.

Similar content being viewed by others

References

  1. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999)

    Article  CAS  Google Scholar 

  2. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000)

    Article  CAS  Google Scholar 

  3. Revy, P. et al. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565–575 (2000)

    Article  CAS  Google Scholar 

  4. Arakawa, H., Hauschild, J. & Buerstedde, J. M. Requirement of the Activation-Induced Deaminase (AID) gene for immunoglobulin gene conversion. Science 295, 1301–1306 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Harris, R. S., Sale, J. E., Petersen-Mahrt, S. K. & Neuberger, M. S. AID is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr. Biol. 12, 435–438 (2002)

    Article  CAS  Google Scholar 

  6. Martin, A. et al. Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature 415, 802–806 (2002)

    Article  CAS  Google Scholar 

  7. Okazaki, I., Kinoshita, K., Muramatsu, M., Yoshikawa, K. & Honjo, T. The AID enzyme induces class switch recombination in fibroblasts. Nature 416, 340–345 (2002)

    Article  CAS  Google Scholar 

  8. Maizels, N. Somatic hypermutation: how many mechanisms diversify V region sequences? Cell 83, 9–12 (1995)

    Article  CAS  Google Scholar 

  9. Weill, J. C. & Reynaud, C. A. Rearrangement/hypermutation/gene conversion: when, where and why? Immunol. Today 17, 92–97 (1996)

    Article  CAS  Google Scholar 

  10. Sale, J. E., Calandrini, D. M., Takata, M., Takeda, S. & Neuberger, M. S. Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation. Nature 412, 921–926 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Ehrenstein, M. R. & Neuberger, M. S. Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J. 18, 3484–3490 (1999)

    Article  CAS  Google Scholar 

  12. Rada, C., Ehrenstein, M. R., Neuberger, M. S. & Milstein, C. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity 9, 135–141 (1998)

    Article  CAS  Google Scholar 

  13. Wiesendanger, M., Kneitz, B., Edelmann, W. & Scharff, M. D. Somatic hypermutation in MutS homologue (MSH)3-, MSH6-, and MSH3/MSH6-deficient mice reveals a role for the MSH2–MSH6 heterodimer in modulating the base substitution pattern. J. Exp. Med. 191, 579–584 (2000)

    Article  CAS  Google Scholar 

  14. Lindahl, T. Suppression of spontaneous mutagenesis in human cells by DNA base excision-repair. Mutat. Res. 462, 129–135 (2000)

    Article  CAS  Google Scholar 

  15. Sale, J. E. & Neuberger, M. S. TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunity 9, 859–869 (1998)

    Article  CAS  Google Scholar 

  16. Zeng, X. et al. DNA polymerase η is an A–T mutator in somatic hypermutation of immunoglobulin variable genes. Nature Immunol. 2, 537–541 (2001)

    Article  CAS  Google Scholar 

  17. Rogozin, I. B., Pavlov, Y. I., Bebenek, K., Matsuda, T. & Kunkel, T. A. Somatic mutation hotspots correlate with DNA polymerase eta error spectrum. Nature Immunol. 2, 530–536 (2001)

    Article  CAS  Google Scholar 

  18. Manis, J. P., Tian, M. & Alt, F. W. Mechanism and control of class-switch recombination. Trends Immunol. 23, 31–39 (2002)

    Article  CAS  Google Scholar 

  19. Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Chen, X., Kinoshita, K. & Honjo, T. Variable deletion and duplication at recombination junction ends: implication for staggered double-strand cleavage in class-switch recombination. Proc. Natl Acad. Sci. USA 98, 13860–13865 (2001)

    Article  ADS  CAS  Google Scholar 

  21. Miller, J. H. Experiments in Molecular Genetics, (Cold Spring Harbor Press, Cold Spring Harbor, 1972)

    Google Scholar 

  22. Mokkapati, S. K., Fernandez de Henestrosa, A. R. & Bhagwat, A. S. Escherichia coli DNA glycosylase Mug: a growth-regulated enzyme required for mutation avoidance in stationary-phase cells. Mol. Microbiol. 41, 1101–1111 (2001)

    Article  CAS  Google Scholar 

  23. Schouten, K. A. & Weiss, B. Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid. Mutat. Res. 435, 245–254 (1999)

    Article  CAS  Google Scholar 

  24. He, B., Qing, H. & Kow, Y. W. Deoxyxanthosine in DNA is repaired by Escherichia coli endonuclease V. Mutat. Res. 459, 109–114 (2000)

    Article  CAS  Google Scholar 

  25. Betz, A. G. et al. Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell 77, 239–248 (1994)

    Article  CAS  Google Scholar 

  26. Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296 (2002)

    Article  CAS  Google Scholar 

  27. Shen, J.-C., Rideout, W. M. & Jones, P. A. High frequency mutagenesis by a DNA methyltransferase. Cell 71, 1073–1080 (1992)

    Article  CAS  Google Scholar 

  28. Navaratnam, N. et al. Escherichia coli cytidine deaminase provides a molecular model for ApoB RNA editing and a mechanism for RNA substrate recognition. J. Mol. Biol. 275, 695–714 (1998)

    Article  CAS  Google Scholar 

  29. Selker, E. U. Premeiotic instability of repeated sequences in Neurospora crassa. Ann. Rev. Genet. 24, 579–613 (1990)

    Article  CAS  Google Scholar 

  30. Jin, D. J. & Zhou, Y. N. Mutational analysis of structure-function relationship of RNA polymerase in Escherichia coli. Methods Enzymol. 273, 300–319 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Bhagwat, P. Holliger, R. Savva, B. Weiss and the Coli Genetic Stock Center for plasmids and bacterial strains; R. Beale and J. di Noia for discussions; J. Sale for comments on the manuscript; and the late César Milstein, a long-term colleague, for encouraging us to work on antibody diversification. S.K.P.-M. and R.S.H. were supported in part by EMBO and Burroughs Wellcome Fund Hitchings–Elion fellowships, respectively; this work was also supported in part by the Arthritis Research Campaign and Leukaemia Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Neuberger.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen-Mahrt, S., Harris, R. & Neuberger, M. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–104 (2002). https://doi.org/10.1038/nature00862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00862

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing