Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sub-laser-cycle electron pulses for probing molecular dynamics

Abstract

Experience shows that the ability to make measurements in any new time regime opens new areas of science. Currently, experimental probes for the attosecond time regime (10-18–10-15 s) are being established. The leading approach is the generation of attosecond optical pulses by ionizing atoms with intense laser pulses. This nonlinear process leads to the production of high harmonics during collisions between electrons and the ionized atoms. The underlying mechanism implies control of energetic electrons with attosecond precision. We propose that the electrons themselves can be exploited for ultrafast measurements. We use a ‘molecular clock’, based on a vibrational wave packet in H2+ to show that distinct bunches of electrons appear during electron–ion collisions with high current densities, and durations of about 1 femtosecond (10-15 s). Furthermore, we use the molecular clock to study the dynamics of non-sequential double ionization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Important potential-energy curves for H2 and its ions.
Figure 2: The number of protons measured per unit energy as a function of the proton kinetic energy.
Figure 3: Ellipticity dependence of the number of energetic protons produced when an intense laser field ionizes H2.
Figure 4: The calculated electron current density experienced by the ion as a function of time after ionization.
Figure 5: Observed (data points) and calculated (solid curve) kinetic-energy spectrum for the energetic protons caused by inelastic scattering.
Figure 6: Angular dependence of the double-ionization (excitation) probability due to recollision.
Figure 7: Intensity dependence of the double-ionization (excitation) probability.

Similar content being viewed by others

References

  1. Corkum, P. B., Ivanov, M. Yu. & Burnett, N. H. Sub-femtosecond pulses. Opt. Lett. 19, 1870–1872 (1994)

    Article  ADS  CAS  Google Scholar 

  2. Drescher, M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Antoine, P., L'Huillier, A. & Lewenstein, M. Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Papadogiannis, N. A., Witzel, B., Kalpouzous, C. & Charalambidis, D. Observation of attosecond light localization in higher order harmonic generation. Phys. Rev. Lett. 83, 4289–4292 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Corkum, P. B. A plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

    ADS  CAS  PubMed  Google Scholar 

  8. Fittinghoff, D. N., Bolton, P. R., Chang, B. & Kulander, K. C. Observation of nonsequential double ionization of helium with optical tunneling. Phys. Rev. Lett. 69, 2642–2645 (1992)

    Article  ADS  CAS  Google Scholar 

  9. Weber, Th. et al. Correlated electron emission in multiphoton double ionization. Nature 405, 658–661 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Bhardwaj, V. R., Rayner, D. M., Villeneuve, D. M. & Corkum, P. B. Quantum interference effects in double ionization and fragmentation of C6H6 . Phys. Rev. Lett. 87, 253003-1–253003-4 (2001)

    Article  ADS  Google Scholar 

  11. Walker, B. et al. Precision measurement of strong field double ionization of helium. Phys. Rev. Lett. 73, 1227–1230 (1994)

    Article  ADS  CAS  Google Scholar 

  12. Dietrich, P., Burnett, N. H., Ivanov, M. Yu. & Corkum, P. B. High harmonic generation and correlated two electron multiphoton ionization with elliptically polarized light. Phys. Rev. A 50, 3585–3588 (1994)

    Article  ADS  Google Scholar 

  13. Yudin, G. L. & Ivanov, M. Yu. Physics of correlated double ionization of atoms in intense laser fields: Quasistatic tunneling limit. Phys. Rev. A 63, 033404-1–033404-14 (2001); erratum Phys. Rev. A 64, 019902 (2001).

  14. Trump, C., Rottke, H. & Sandner, W. Strong-field photoionization of vibrational ground-state H2+ and D2+ molecules. Phys. Rev. A 60, 3924–2928 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Staudte, A. et al. Observation of a nearly isotropic, high energy Coulomb explosion group in the fragmentation of D2 by short laser pulses. Phys. Rev. A 65, 020703-1–02070-4 (2002)

    Article  ADS  Google Scholar 

  16. Sakai, H. et al. Non-sequential double ionization of D2 molecules with intense 20 fs pulses. Phys. Rev. Lett. (submitted)

  17. Constant, E., Stapelfeldt, H. & Corkum, P. B. Observation of enhanced ionization of molecular ions in intense laser fields. Phys. Rev. Lett. 76, 4140–4143 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Muth-Böhm, J., Becker, A. & Faisal, F. H. M. Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields. Phys. Rev. Lett. 85, 2280–2283 (2000)

    Article  ADS  Google Scholar 

  19. Ellert, Ch. & Corkum, P. B. Disentangling molecular alignment and enhanced ionization in intense laser fields. Phys. Rev. A 59, R3170–R3173 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Hankin, S., Villeneuve, D. M., Corkum, P. B. & Rayner, D. M. Nonlinear ionization of organic molecules in high intensity laser fields. Phys. Rev. Lett. 84, 5082–5085 (2000)

    Article  ADS  CAS  Google Scholar 

  21. Zavriyev, A., Bucksbaum, P. H., Muller, H. G. & Schumacher, D. W. Ionization and dissociation in H2 in intense laser fields at 1.064 μm, 532 nm and 355 nm. Phys. Rev. A 42, R5500–R5513 (1990)

    Article  ADS  Google Scholar 

  22. Zavriyev, A., Bucksbaum, P. H., Squier, J. & Salin, F. Light-induced vibrational states in H2+ and D2+ in intense laser fields. Phys. Rev. Lett. 70, 1077–1080 (1993)

    Article  ADS  CAS  Google Scholar 

  23. Seideman, T., Ivanov, M. Yu. & Corkum, P. B. The role of electron localization in intense field molecular ionization. Phys. Rev. Lett. 75, 2819–2822 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Zuo, T. & Bandrauk, A. D. Charge-resonance-enhanced ionization of diatomic molecular ions by intense lasers. Phys Rev. A 52, R2511–R2514 (1995)

    Article  ADS  CAS  Google Scholar 

  25. Delone, N. B. & Krainov, V. P. Energy and angular electron spectra for the tunnel ionization of atoms by strong low-frequency radiation. J. Opt. Soc. Am. B 8, 1207–1212 (1991)

    Article  ADS  CAS  Google Scholar 

  26. Peek, J. M. Inelastic scattering of electrons by the hydrogen molecular ion. Phys. Rev. 134, A877–A883 (1964)

    Article  ADS  Google Scholar 

  27. Ammosov, M. V., Delone, N. B. & Krainov, V. P. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Zh. Eksp. Teor. Fiz. 91, 2008–2013 (1986); Sov. Phys. JETP 64, 1191–1194 (1989).

  28. Keldysh, L. V. Ionization in the field of a strong electromagnetic wave. J. Exp. Theor. Phys. 47, 1945–1957 (1964)

    CAS  Google Scholar 

  29. Dietrich, P., Ivanov, M. Yu., Ilkov, F. & Corkum, P. B. Two-electron dissociative ionization of H2 and D2 in infrared fields. Phys. Rev. Lett. 77, 4150–4153 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Macklin, J. J., Kmetic, J. D. & Gordon, C. L. High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766–769 (1993)

    Article  ADS  CAS  Google Scholar 

  31. Bartels, R. et al. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays. Nature 406, 164–166 (2000)

    Article  ADS  CAS  Google Scholar 

  32. Mohideen, U. et al. High intensity above-threshold ionization of He. Phys. Rev. Lett. 71, 509–512 (1993)

    Article  ADS  CAS  Google Scholar 

  33. Paulus, G. G., Nicklich, W., Xu, H., Lambropoulos, P. & Walther, H. Plateau in above threshold ionization spectra. Phys. Rev. Lett. 72, 2851–2854 (1994)

    Article  ADS  CAS  Google Scholar 

  34. Feuerstein, B. et al. Separation of recollision mechanisms in nonsequential strong field double ionization of Ar: The role of excitation tunneling. Phys. Rev. Lett. 87, 043003–043007 (2001)

    Article  ADS  CAS  Google Scholar 

  35. Becker, A. et al. Laser-induced inner shell vacancies in double ionized argon. J. Phys. B 33, L547–L552 (2000)

    Article  ADS  CAS  Google Scholar 

  36. Bhardwaj, V. R. et al. Few cycle dynamics of multiphoton double-ionization. Phys. Rev. Lett. 86, 3522–3525 (2001)

    Article  ADS  CAS  Google Scholar 

  37. Rischel, C. et al. Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490–492 (1997)

    Article  ADS  CAS  Google Scholar 

  38. Ihee, H. et al. Direct imaging of transient molecular structures with ultrafast diffraction. Science 291, 458–462 (2001)

    Article  ADS  CAS  Google Scholar 

  39. Ivanov, M. Yu., Corkum, P. B., Zuo, T. & Bandrauk, A. D. Routes to control of intense-field atomic polarizability. Phys. Rev. Lett. 74, 2933–2937 (1995)

    Article  ADS  CAS  Google Scholar 

  40. Neutze, R. et al. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

F.L. acknowledges financial support from Canada's Natural Science and Engineering Research Council, the Canadian Institute for Photonics Innovation and Quebec's Fonds pour la Formation des Chercheurs et l'Aide à la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Corkum.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niikura, H., Légaré, F., Hasbani, R. et al. Sub-laser-cycle electron pulses for probing molecular dynamics. Nature 417, 917–922 (2002). https://doi.org/10.1038/nature00787

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00787

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing