Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold

Abstract

Rotavirus, the major cause of life-threatening infantile gastroenteritis, is a member of the Reoviridae1. Although the structures of rotavirus2 and other members of the Reoviridae3,4 have been extensively studied, little is known about the structures of virus-encoded non-structural proteins that are essential for genome replication and packaging. The non-structural protein NSP2 of rotavirus, which exhibits nucleoside triphosphatase, single-stranded RNA binding5, and nucleic-acid helix-destabilizing6 activities, is a major component of viral replicase complexes7,8. We present here the X-ray structure of the functional octamer9 of NSP2 determined to a resolution of 2.6 Å. The NSP2 monomer has two distinct domains. The amino-terminal domain has a new fold. The carboxy-terminal domain resembles the ubiquitous cellular histidine triad (HIT) group of nucleotidyl hydrolases10. This structural similarity suggests that the nucleotide-binding site is located inside the cleft between the two domains. Prominent grooves that run diagonally across the doughnut-shaped octamer are probable locations for RNA binding. Several RNA binding sites, resulting from the quaternary organization of NSP2 monomers, may be required for the helix destabilizing activity of NSP2 and its function during genome replication and packaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The X-ray structure of the monomeric subunit of NSP2.
Figure 2: The HIT-like fold in NSP2.
Figure 3: Octameric structure.

Similar content being viewed by others

References

  1. Estes, M. K. et al. in Virology (ed. Fields, B. N.) 1625–1655 (Raven, New York, 1996)

    Google Scholar 

  2. Prasad, B. V. V. et al. Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature 382, 471–473 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Reinisch, K. M., Nibert, M. L. & Harrison, S. C. Structure of the reovirus core at 3.6-Å resolution. Nature 404, 960–967 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Grimes, J. M. et al. The atomic structure of the bluetongue virus core. Nature 395, 470–478 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Taraporewala, Z., Chen, D. & Patton, J. Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity. J. Virol. 73, 9934–9943 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Taraporewala, Z. & Patton, J. Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. J. Virol. 75, 4519–4527 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aponte, C., Poncet, D. & Cohen, J. Recovery and characterization of a replicase complex in rotavirus-infected cells by using a monoclonal antibody against NSP2. J. Virol. 70, 985–991 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gallegos, C. & Patton, J. Characterization of rotavirus replication intermediates: a model for the assembly of single-shelled particles. Virology 172, 616–627 (1989)

    Article  CAS  PubMed  Google Scholar 

  9. Schuck, P., Taraporewala, Z., McPhie, P. & Patton, J. T. Rotavirus nonstructural protein NSP2 self-assembles into octamers that undergo ligand-induced conformational changes. J. Biol. Chem. 276, 9679–9687 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. Lima, C. D., Klein, M. G. & Hendrickson, W. A. Structure-based analysis of catalysis and substrate definition in the HIT protein family. Science 278, 286–290 (1997)

    Article  CAS  PubMed  Google Scholar 

  11. Petrie, B. L., Greenberg, H. B., Graham, D. Y. & Estes, M. K. Ultrastructural localization of rotavirus antigens using colloidal gold. Virus Res. 1, 133–152 (1984)

    Article  CAS  PubMed  Google Scholar 

  12. Kattoura, M., Chen, X. & Patton, J. The rotavirus RNA-binding protein NS35 (NSP2) forms 10S multimers and interacts with the viral RNA polymerase. Virology 202, 803–813 (1994)

    Article  CAS  PubMed  Google Scholar 

  13. Ramig, R. & Petrie, B. L. Characterization of temperature-sensitive mutants of simian rotavirus SA11:protein synthesis and morphogenesis. J. Virol. 49, 665–673 (1984)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, D., Gombold, J. L. & Ramig, R. F. Intracellular RNA synthesis directed by temperature-sensitive mutants of simian rotavirus SA11. Virology 178, 143–151 (1990)

    Article  CAS  PubMed  Google Scholar 

  15. Uitenweerde, J. M., Theron, J., Stoltz, M. A. & Huismans, H. The multimeric nonstructural NS2 proteins of bluetongue virus, African horsesickness virus, and epizootic hemorrhagic disease virus differ in their single-stranded RNA-binding ability. Virology 209, 624–632 (1995)

    Article  CAS  PubMed  Google Scholar 

  16. Taraporewala, Z., Chen, D. & Patton, J. Multimers of the bluetongue virus nonstructural protein, NS2, possess nucleotidyl phosphatase activity: similarities between NS2 and rotavirus NSP2. Virology 280, 221–231 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Gillian, A. L., Schmechel, S. C., Livny, J., Schiff, L. A. & Nibert, M. L. Reovirus protein sigma NS binds in multiple copies to single-stranded RNA and shares properties with single-stranded DNA binding proteins. J. Virol. 74, 5939–5948 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen, J. Rethinking a vaccine risk. Science 293, 1576–1577 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Holm, L. & Sander, C. Protein folds and families: sequence and structure alignments. Nucleic Acid Res. 27, 244–247 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lima, C. D., Klein, M. G., Weinstein, I. B. & Hendrickson, W. A. Three-dimensional structure of human protein kinase C interacting protein 1, a member of the HIT family of proteins. Proc. Natl. Acad. Sci. USA 28, 5357–5362 (1996)

    Article  ADS  Google Scholar 

  21. Brenner, C., Biegonowski, P., Pace, H. C. & Huebner, K. The histidine superfamily of nucleotide-binding proteins. J. Cell. Phys. 181, 179–187 (1999)

    Article  CAS  Google Scholar 

  22. Raghunathan, S., Kozlov, A. G., Lohman, T. M. & Waksman, G. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nature Struct. Biol. 7, 648–652 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  24. Collaborative Computational Project, Number 4. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  25. Brunger, A. T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  PubMed  Google Scholar 

  26. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  PubMed  Google Scholar 

  27. Brünger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992)

    Article  ADS  PubMed  Google Scholar 

  28. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

  29. Merritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997)

    Article  CAS  PubMed  Google Scholar 

  30. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Nickitenko, B. Bowman, W. Meador and the National Synchroton Light Source beamline (X8C) staff for help with data collection, and F.A. Quiocho for allowing us to use X-ray diffraction facilities at the Baylor College of Medicine. We also thank M. K. Estes and R. F. Ramig, and M. Sowa, for helpful discussions. This work was supported by grants from the NIH and R. Welch foundation to B.V.V.P and an NIH intramural grant to J.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Venkataram Prasad.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaram, H., Taraporewala, Z., Patton, J. et al. Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold. Nature 417, 311–315 (2002). https://doi.org/10.1038/417311a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417311a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing