Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mantle wedge control on back-arc crustal accretion

Abstract

At mid-ocean ridges, plate separation leads to upward advection and pressure-release partial melting of fertile mantle material; the melt is then extracted to the spreading centre and the residual depleted mantle flows horizontally away1. In back-arc basins, the subducting slab is an important control on the pattern of mantle advection and melt extraction, as well as on compositional and fluid gradients2. Modelling studies3 predict significant mantle wedge effects on back-arc spreading processes. Here we show that various spreading centres in the Lau back-arc basin exhibit enhanced, diminished or normal magma supply, which correlates with distance from the arc volcanic front but not with spreading rate. To explain this correlation we propose that depleted upper-mantle material, generated by melt extraction in the mantle wedge, is overturned and re-introduced beneath the back-arc basin by subduction-induced corner flow. The spreading centres experience enhanced melt delivery near the volcanic front, diminished melting within the overturned depleted mantle farther from the corner and normal melting conditions in undepleted mantle farther away. Our model explains fundamental differences in crustal accretion variables between back-arc and mid-ocean settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location map of the Lau basin showing the back-arc spreading centres (heavy lines), trench axis (dotted line) and contours of the subducted slab (dashed lines) labelled in km.
Figure 2: Map and axial profiles of the Lau spreading centres.
Figure 3: Model of mantle wedge control on back-arc crustal accretion.

Similar content being viewed by others

References

  1. Langmuir, C. H., Klein, E. M. & Plank, T. in Mantle Flow and Melt Generation at Mid-Ocean Ridges (eds Phipps Morgan, J., Blackman, D. K. & Sinton, J. M.) (American Geophysical Union, Washington DC, 1992).

    Google Scholar 

  2. Davies, J. H. & Stevenson, D. J. Physical model of source region of subduction zone volcanics. J. Geophys. Res. 97, 2037–2070 (1992).

    Article  ADS  Google Scholar 

  3. Ribe, N. M. Mantle flow induced by back arc spreading. Geophys. J. Int. 98, 85–91 (1989).

    Article  ADS  Google Scholar 

  4. Chiu, J.-M., Isacks, B. L. & Cardwell, R. K. 3-D configuration of subducted lithosphere in the western Pacific. Geophys. J. Int. 106, 99–111 (1991).

    Article  ADS  Google Scholar 

  5. Zellmer, K. E. & Taylor, B. A three-plate kinematic model for Lau Basin opening. Geochem. Geophys. Geosyst. [online] 2, 2000GC000106 (2001).

    Article  Google Scholar 

  6. Pearce, J. A. et al. in Volcanism Associated with Extension at Consuming Plate Margins (ed. Smellie, J. L.) 53–75 (Geological Society, London, 1995).

    Google Scholar 

  7. Vallier, T. L. et al. Subalkaline andesite from Valu Fa Ridge, a back-arc spreading center in southern Lau Basin: petrogenesis, comparative chemistry, and tectonic implications. Chem. Geol. 91, 227–256 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Jenner, G. A., Cawood, P. A., Rautenschlein, M. & White, W. M. Composition of back-arc basin volcanics, Valu Fa ridge, Lau Basin: Evidence for a slab-derived component in their mantle source. J. Volcanol. Geotherm. Res. 32, 209–222 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Harding, A. J., Kent, G. M. & Collins, J. A. Initial results from a multichannel seismic survey of the Lau back-arc basin. Eos 81, F1115 (2000).

    Google Scholar 

  10. Turner, I. M., Peirce, C. & Sinha, M. C. Seismic imaging of the axial region of the Valu Fa Ridge, Lau Basin—the accretionary processes of an intermediate back-arc spreading ridge. Geophys. J. Int. 138, 495–519 (1999).

    Article  ADS  Google Scholar 

  11. Crawford, W. C., Hildebrand, J. A., Dorman, L. M., Webb, S. C. & Wiens, D. A. Tonga Ridge and Lau Basin crustal structure from seismic refraction data. J. Geophys. Res. (in the press).

  12. Taylor, B., Zellmer, K., Martinez, F. & Goodliffe, A. Sea-floor spreading in the Lau back-arc basin. Earth Planet. Sci. Lett. 144, 35–40 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Scheirer, D. & Macdonald, K. C. Variation in cross-sectional area of the axial ridge along the East Pacific Rise—Evidence for the magmatic budget of a fast spreading center. J. Geophys. Res. 98, 7871–7885 (1993).

    Article  ADS  Google Scholar 

  14. Sinha, M. C. Segmentation and rift propagation at the Valu Fa ridge, Lau Basin: Evidence from gravity data. J. Geophys. Res. 100, 15025–15043 (1995).

    Article  ADS  Google Scholar 

  15. Hawkins, J. W. Backarc Basins: Tectonics and Magmatism (ed. Taylor, B.) 63–138 (Plenum, New York, 1995).

    Book  Google Scholar 

  16. Martinez, F., Fryer, P., Baker, N. A. & Yamazaki, T. Evolution of backarc rifting: Mariana Trough, 20°-24°N. J. Geophys. Res. 100, 3807–3827 (1995).

    Article  ADS  Google Scholar 

  17. Wright, I. C., Parson, L. M. & Gamble, J. A. Evolution and interaction of migrating cross arc volcanism and back-arc rifting: An example from the southern Havre Trough (35°20′-37°S). J. Geophys. Res. 101, 22071–22086 (1996).

    Article  ADS  Google Scholar 

  18. Wiedicke, M. & Collier, J. Morphology of the Valu Fa Spreading Ridge in the Southern Lau Basin. J. Geophys. Res. 98, 11769–11782 (1993).

    Article  ADS  Google Scholar 

  19. Fouquet, Y. et al. Hydrothermal activity and metallogenesis in the Lau back-arc basin. Nature 349, 778–781 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Kappel, E. S. & Ryan, W. B. F. Volcanic episodicity and a non-steady state rift valley along northeast Pacific spreading centers: evidence from SeaMARC I. J. Geophys. Res. 91, 13925–13940 (1986).

    Article  ADS  Google Scholar 

  21. Bortnikov, N. S., Fedorov, D. T. & Murav’ev, K. G. Mineral composition and conditions of the formation of sulfide edifices in the Lau Basin (southwestern sector of the Pacific Ocean). Geol. Ore Deposits 35, 476–488 (1993).

    Google Scholar 

  22. Hochstaedter, A. G. et al. Across-arc geochemical trends in the Izu-Bonin arc: Constraints on source composition and mantle melting. J. Geophys. Res. 105, 495–512 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Hochstaedter, A. G., Kepezhinskas, P., Defant, M., Drummond, M. & Koloskov, A. Insights into the volcanic arc mantle wedge from magnesian lavas from the Kamchatka arc. J. Geophys. Res. 101, 697–712 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Woodhead, J., Eggins, S. & Gamble, J. High field strength and transition element systematics in island arc and backarc basin basalts: Evidence for multiphase melt extraction and a depleted mantle wedge. Earth Planet. Sci. Lett. 114, 491–504 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Stolper, E. & Newman, S. The role of water in the petrogenesis of Mariana trough magmas. Earth Planet. Sci. Lett. 121, 293–325 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Spiegelman, M. & McKenzie, D. Simple 2-D models for melt extraction at mid-ocean ridges and island arcs. Earth Planet. Sci. Lett. 83, 137–152 (1987).

    Article  ADS  Google Scholar 

  27. Phipps Morgan, J. The generation of a compositional lithosphere by mid-ocean ridge melting and its effect on subsequent off-axis hotspot upwelling and melting. Earth Planet. Sci. Lett. 146, 213–232 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Hergt, J. M. & Hawkesworth, C. J. Pb-, Sr-, and Nd-isotopic evolution of the Lau Basin: Implications for mantle dynamics during backarc opening. Proc. ODP Sci. Res. 135, 505–517 (1994).

    CAS  Google Scholar 

  30. Martinez, F., Fryer, P. & Becker, N. Geophysical characteristics of the Southern Mariana Trough, 11°50′N-13°40′N. J. Geophys. Res. 105, 16591–16608 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Harding, G. Kent and J. Collins for providing gravity and multibeam data from RV Maurice Ewing cruise EW9914, and A. Goodliffe and K. Zellmer for providing bathymetric data compilations and for discussions. We also thank D. Scheirer for comments on the manuscript that improved this contribution. This work was supported by the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Martinez.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, F., Taylor, B. Mantle wedge control on back-arc crustal accretion. Nature 416, 417–420 (2002). https://doi.org/10.1038/416417a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416417a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing