Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

Cold atoms and quantum control

Abstract

This overview prefaces a collection of Insight review articles on the physics and applications of laser-cooled atoms. I will cast this work into a historical perspective in which laser cooling and trapping is seen as one of several research directions aimed at controlling the internal and external degrees of freedom of atoms and molecules.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Traditional atomic-beam resonance apparatus.
Figure 2: Ramsey's separated oscillatory-field method.
Figure 3: Atomic clocks.
Figure 4: Two atomic trajectories are shown interacting with optical beams of light.

References

  1. Rabi, I. I., Zacharias, J. R., Millman, S. & Kusch, P. A new method of measuring nuclear magnetic moments. Phys. Rev. 53, 318 (1938).

    Article  ADS  CAS  Google Scholar 

  2. Kastler, A. in Nobel Lectures in Physics, 1963–1970 180–208 (World Scientific, Singapore, 1991).

    Google Scholar 

  3. Ramsey, N. F. A new molecular beam resonance method. Phys. Rev. 76, 996 (1949).

    Article  CAS  Google Scholar 

  4. Kasevich, M. A., Riis, E., Chu, S. & DeVoe, R. G. Rf spectroscopy in an atomic fountain. Phys. Rev. Lett. 63, 612–615 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Laurent, P. et al. in Laser Spectroscopy XIV (eds Blatt, R., Escher J., Liebfried, D. & Schmidt-Kaler, F.) 41–50 (World Scientific, Singapore, 1999).

    Google Scholar 

  6. Baklanov Ye, V., Dubetsky, B. Ya. & Chebotayev, V. P. Non-linear Ramsey resonance in the optical region. Appl. Phys. 9, 171–173 (1976).

    Article  ADS  Google Scholar 

  7. Chebotayev, V. P., Dubetsky, B. Ya., Kasantsev, A. P. & Yakolev, V. P. Interference of atoms in separated optical fields. Opt. Soc. Am. B 2, 1791–1798 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Beausoleil, R. G. & Hänsch, T. W. Ultra-high resolution two-photon optical Ramsey spectroscopy of an atomic fountain. Phys. Rev. A 33, 1661–1670 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Bordé, C. R. On Ramsey fringes in spectroscopy without Doppler broadening. C.J. Acad. Sci. Ser. B 284, 101–104 (1977).

    Google Scholar 

  10. Bordé, Ch. Atomic interferometry with internal state labeling. Phys. Lett. A 140, 10–12 (1989).

    Article  ADS  Google Scholar 

  11. Helmcke, J., Zevgolis, D. & Yen. B. Ü. Observation of high contrast ultra narrow optical Ramsey fringes in saturated absorption utilizing four interaction zones of traveling waves. Appl. Phys. B 28, 83–84 (1988).

    Google Scholar 

  12. Salomon, Ch., Avillier, S., van Lerberghe, A. & Bordé, Ch. in Laser Spectroscopy VI (eds Weber, H. P., Lüthy, W.) 159–160 (Springer, Berlin, 1983).

    Book  Google Scholar 

  13. Peters, A., Chung, K. Y. & Chu, S. High precision gravity measurements using atom interferometry. Metrology 38, 25–61 (2001).

    Article  ADS  CAS  Google Scholar 

  14. Sadden, M. J., McGrirk, J. M., Boiyer, P., Hariots, K. G. & Kasevich, M. A. Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer. Phys. Rev. Lett. 81, 971–974 (1998).

    Article  ADS  Google Scholar 

  15. Gustavson, T. L., Boyer, P. & Kasevich, M. A. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett. 78, 2046–2049 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Hensley, J., Wicht, A., Young, B. & Chu, S. in Proc. 17th Int. Conf. Atomic Physics (eds Arimondo, E., De Natale, P. & Inguscio, M.) 43–57 (Am. Inst. Phys., New York, 2000).

    Google Scholar 

  17. Kasevich, M. & Chu, S. Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Wineland, D. J., Drullinger, R. E. & Walls, F. L. Radiation-pressure cooling of bound resonant absorbers. Phys. Rev. Lett. 40, 1639–1642 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Diedrich, F., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403–407 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a universal quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  21. Hänsch, T. W. & Schawlow, A. L. Cooling of gases by laser radiation. Opt. Commun. 13, 68–70 (1975).

    Article  ADS  Google Scholar 

  22. Wineland, D. J. & Itano, I. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Gordon, J. P. & Ashkin, A. Motion of atoms in a radiation trap. Phys. Rev. A 21, 1606–1617 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Letokov, V. S. & Minogin, V. G. Laser radiation pressure on free atoms. Phys. Rep. 73, 1 (1981).

    Article  ADS  Google Scholar 

  25. Chu, S., Cohen-Tannoudji, C. & Phillips, W. D. 1997 Nobel Lectures in physics. Rev. Mod. Phys. 70, 685–706, 707–720,721–741 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Hess, H. F. Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. Phys. Rev. B 34, 3476–3479 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Mashara, N. et al. Evaporative cooling of spin-polarized hydrogen. Phys. Rev. Lett. 61, 935–938 (1988).

    Article  ADS  Google Scholar 

  28. Wineland, D. & Dehmelt, H. Proposed 1014 Δν < ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator. Bull. Am. Phys. Soc. 20, 637 (1975).

    Google Scholar 

  29. Aspect, A., Arimondo, E., Kaiser, R., Vansteenkiste, N. & Cohen-Tannoudji, C. Laser cooling below the one photon recoil by velocity selective coherent population trapping. Phys. Rev. Lett. 61, 826–829 (1988).

    Article  ADS  CAS  Google Scholar 

  30. Kasevich, M. & Chu, S. Laser cooling below a photon recoil with stimulated Raman transitions. Phys. Rev. Lett. 69, 1741–1743 (1992).

    Article  ADS  CAS  Google Scholar 

  31. Kerman, A. J., Vuletić, V., Chin, C. & Chu, S. Beyond optical molasses: 3D Raman sideband cooling of atomic cesium to high phase space density. Phys. Rev. Lett. 84, 439–442 (2000).

    Article  ADS  CAS  Google Scholar 

  32. Ketterle, W., Davis, K. B., Joffe, M. A., Martin, A. & Pritchard, D. E. High densities of cold atoms in a dark spontaneous force optical trap. Phys. Rev. Lett. 70, 2253–2257 (1993).

    Article  ADS  CAS  Google Scholar 

  33. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  34. Kleppner, D. Inhibited spontaneous emission. Phys. Rev. Lett. 47, 233–237 (1981).

    Article  ADS  CAS  Google Scholar 

  35. Goy, P., Raimond, J. M., Gross, M. & Haroche, S. Observation of cavity enhanced single atom spontaneous emission. Phys. Rev. Lett. 50, 1903–1907 (1983).

    Article  ADS  CAS  Google Scholar 

  36. Hulet, R. G., Hilfer, E. S. & Kleppner, D. Inhibited spontaneous emission by a Rydberg atom. Phys. Rev. Lett. 55, 2137–2140 (1985).

    Article  ADS  CAS  Google Scholar 

  37. Berman, P. R. (ed.) Cavity Quantum Electrodynamics (Academic, San Diego, 1994).

    Google Scholar 

  38. Osnaghi, S. et al. Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902-1–037902-4 (2001).

    Article  ADS  Google Scholar 

  39. Mossberg, T. W., Lewenstein, A. & Gauthier, D. J. Trapping and cooling of atoms in a vacuum perturbed in a frequency dependent manner. Phys. Rev. Lett. 67, 1723–1726 (1991).

    Article  ADS  CAS  Google Scholar 

  40. Gangl, M. & Ritsch, H. Cooling neutral particles in multimode cavities without spontaneous emission. J. Mod. Opt. 47, 2741–2753 (2000).

    Article  ADS  CAS  Google Scholar 

  41. Vuletić, V. & Chu, S. Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett. 84, 3787–3790 (2000).

    Article  ADS  Google Scholar 

  42. Vuletić, V., Chan, H. W. & Black, A. T. Three dimension cavity Doppler cooling and cavity sideband cooling by coherent scattering. Phys. Rev. A 64, 033405-1–033405-7 (2001).

    Article  ADS  Google Scholar 

  43. Young, B. C. et al. in Laser Spectroscopy XIV (eds Blatt, R., Eschner, J., Leibfried, D. & Schmidt-Kaler, F.) 61–70 (World Scientific, Singapore, 1999).

    Google Scholar 

  44. Stwalley, W. C. & Wang. H. Photoassociation of ultra-cold atoms: a new spectroscopic technique. J. Mol. Spect. 195, 194–228 (1999).

    Article  ADS  CAS  Google Scholar 

  45. Feshbach, H. A unified theory of nuclear reactions II. Ann. Phys. 19, 287–313 (1962).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. Tiesinga, E., Verhaar, B. J. & Stoof, H. T. C. Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A 47, 4144–4122 (1993).

    ADS  Google Scholar 

  47. Inouye, S. et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151–154 (1998).

    Article  ADS  CAS  Google Scholar 

  48. Chin, C., Vuleticć, V., Kerman, A. J. & Chu, S. High resolution Feshbach spectroscopy of cesium. Phys. Rev. Lett. 85, 2717–2720 (2000).

    Article  ADS  CAS  Google Scholar 

  49. Leo, P. J., Williams, C. J. & Julienne, P. S. The collision properties of ultracold 133Cs atoms. Phys. Rev. Lett. 85, 2721–2724 (2000).

    Article  ADS  CAS  Google Scholar 

  50. Jaksch, D., Briegel, H.-J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999).

    Article  ADS  CAS  Google Scholar 

  51. Sørenson, A. & Mølmer, K. Spin-spin interaction and spin squeezing in an optical lattice. Phys. Rev. Lett. 83, 2274–2277 (1999).

    Article  ADS  Google Scholar 

  52. Helmerson, K. & Li, Y. Creating massive entanglement of Bose-Einstein condensed atoms. Phys. Rev. Lett. 87, 170402-1–170402-4 (2001).

    Article  ADS  Google Scholar 

  53. Deng, L. et al. Four-wave mixing with matter waves. Nature 398, 218–220 (1999).

    Article  ADS  CAS  Google Scholar 

  54. Denschlag, J. et al. Generating solitons by phase engineering of a Bose-Einstein condensate. Science 287, 97–100 (2000).

    Article  ADS  CAS  Google Scholar 

  55. Burger, S. et al. Dark solitons in Bose-Einstein condensates. Phys. Rev. Lett. 83, 5198–5201 (1999).

    Article  ADS  CAS  Google Scholar 

  56. Orzel, C., Tuchman, A. K., Teseslau, M. L., Yasuda, M. & Kasevich, M. A. Squeezed states in a Bose-Einstein condensate. Science 291, 2386–2389 (2001).

    Article  ADS  CAS  Google Scholar 

  57. Dirac, P. A. M. The Principles of Quantum Mechanics 3rd edn, p. 9 (Oxford Univ. Press, Oxford, 1947).

    Google Scholar 

  58. Heitler, W. The Quantum Theory of Radiation 3rd edn (Oxford Univ. Press, Oxford, 1954).

    MATH  Google Scholar 

  59. Holland, M. J. & Burnett, K. Interferometric detection of optical phase shifts at the Heisenberg limit. Phys. Rev. Lett. 71, 1355–1358 (1993).

    Article  ADS  CAS  Google Scholar 

  60. Donley, E., Anderson, B. P. & Wieman, C. E. New twists in Bose-Einstein condensation. Opt. Photon. News Oct. issue, 34–37 (2001).

  61. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

    Article  ADS  CAS  Google Scholar 

  62. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition form a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  CAS  Google Scholar 

  63. DeMarco, B. & Jin, D. S. Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Science Foundation, the Air Force Office of Scientific Research, the Department of the Navy and the National Reconnaissance Office.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, S. Cold atoms and quantum control. Nature 416, 206–210 (2002). https://doi.org/10.1038/416206a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/416206a

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing