Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Shear instabilities in granular flows

Abstract

Unstable waves have been long studied in fluid shear layers1,2,3. These waves affect transport in the atmosphere and oceans, in addition to slipstream stability behind ships, aeroplanes and heat-transfer devices. Corresponding instabilities in granular flows have not been previously documented4, despite the importance of these flows in geophysical and industrial systems5,6,7. Here we report that breaking waves can form at the interface between two streams of identical grains flowing on an inclined plane downstream of a splitter plate. Changes in either the shear rate or the angle of incline cause such waves to appear abruptly. We analyse a granular flow model that agrees qualitatively with our experimental data; the model suggests that the waves result from competition between shear and extensional strains in the flowing granular bed. We propose a dimensionless shear number that governs the transition between steady and wavy flows.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Instability of interface between shearing granular streams.
Figure 2: Onset of shear instability.
Figure 3: Velocity field in shearing streams.

Similar content being viewed by others

References

  1. Lamb, H. Hydrodynamics (Cambridge Univ. Press, Cambridge, 1932).

    MATH  Google Scholar 

  2. Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability (Clarendon, Oxford, 1961).

    MATH  Google Scholar 

  3. Thorpe, S. A. Experiments on the instability of stratified shear flows: immiscible fluids. J. Fluid Mech. 39, 25–48 (1969).

    Article  ADS  CAS  Google Scholar 

  4. Goddard, J. D. & Alam, M. Shear-flow and material instabilities in particulate suspensions and granular media. Particulate Sci. Technol. 17, 69–96 (1999).

    Article  CAS  Google Scholar 

  5. Denlinger, R. P. & Iverson, R. M. Flow of variably fluidized granular masses across three-dimensional terrain. 2. Numerical predictions and experimental tests. J. Geophys. Res. 106, 553–566 (2001).

    Article  ADS  Google Scholar 

  6. Bagnold, R. A. The movement of desert sand. Proc. R. Soc. Lond. A 157, 594–620 (2001).

    ADS  Google Scholar 

  7. Shinbrot, T. & Muzzio, F. J. Nonequilibrium patterns in granular mixing and segregation. Phys. Today 25–30 (March, 2000).

  8. Melosh, H. J. Dynamical weakening of faults by acoustic fluidization. Nature 379, 601–606 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Scott, D. R. Seismicity and stress rotation in a granular model of the brittle crust. Nature 381, 592–595 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Liu, A. J. & Nagel, S. R. Nonlinear dynamics—Jamming is not just cool any more. Nature 396, 21–22 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Pouliquen, O., Delour, J. & Savage, S. B. Fingering in granular flows. Nature 386, 816–817 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Losert, W., Bocquet, L., Lubensky, T. C. & Gollub, J. P. Particle dynamics in sheared granular matter. Phys. Rev. Lett. 85, 1428–1431 (2000).

    Article  ADS  CAS  Google Scholar 

  13. Menon, N. & Durian, D. J. Diffusing-wave spectroscopy of dynamics in a three-dimensional granular flow. Science 275, 1920 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Howell, D. & Behringer, R. P. Fluctuations in a 2D granular Couette experiment: A critical transition. Phys. Rev. Lett. 82, 5241–5244 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Mueth, D. M. et al. Signatures of granular microstructure in dense shear flows. Nature 406, 385–389 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Louge, M. Y. & Keast, S. C. On dense granular flows down flat frictional inclines. Phys. Fluids 13, 1213–1233 (2001).

    Article  ADS  CAS  Google Scholar 

  17. Forterre, Y. & Pouliquen, O. Longitudinal vortices in granular flows. Phys. Rev. Lett. 86, 5886–5889 (2001).

    Article  ADS  CAS  Google Scholar 

  18. Hanes, D. M. & Walton, O. R. Simulations and physical measurements of glass spheres flowing down a bumpy incline. Powder Technol. 109, 133–144 (2000).

    Article  CAS  Google Scholar 

  19. Savage, S. B. & Hutter, K. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  20. Pouliquen, O. & Gutfraind, R. Stress fluctuations and shear zones in quasistatic granular chute flows. Phys. Rev. E 53, 552–561 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Davies, C. E., Weir, G. & McGavin, P. Behaviour of a dense stream of non-cohesive particles impacting on an inclined plate. Powder Technol. 106, 1–6 (1999).

    Article  CAS  Google Scholar 

  22. Lueptow, R. M., Akonur, A. & Shinbrot, T. PIV for granular flows. Exp. Fluids 28, 183–186 (2000).

    Article  Google Scholar 

  23. Kadanoff, L. P. Built upon sand: Theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71, 435–444 (1999).

    Article  ADS  Google Scholar 

  24. Johnson, P. C., Nott, P. & Jackson, R. Frictional-collisional equations of motion for particulate flows and their application to chutes. J. Fluid Mech. 210, 501–535 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Rericha, E. C., Bizon, C., Shattuck, M. D. & Swinney, H. L. Shocks in supersonic sand. Phys. Rev. Lett. 88, 014302 (2002).

    Article  ADS  Google Scholar 

  26. Wang, C.-H., Jackson, R. & Sundaresan, S. Instabilities of fully developed rapid flow of a granular material in a channel. J. Fluid Mech. 342, 179–197 (1997).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  27. Natarajan, V. V. R., Hunt, M. L. & Taylor, E. D. Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow. J. Fluid Mech. 304, 1–25 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Iverson, R. M. The physics of debris flows. Rev. Geophys. 35, 245–296 (1997).

    Article  ADS  Google Scholar 

  29. Aider, J. L., Sommier, N., Raafat, T. & Hulin, J. P. Experimental study of a granular flow in a vertical pipe: a spatiotemporal analysis. Phys. Rev. E 59, 778–786 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Chan, K. & Rothman, D. H. Coupled length scales in eroding landscapes. Phys. Rev. E 63, 55102–55105 (2001).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Hasan, J. Leung, E. Liss, K. Mehta and J. Pantina for assistance. This work was supported by the US National Science Foundation, Division of Chemical and Transport Systems, and the American Chemical Society, Petroleum Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Glasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldfarb, D., Glasser, B. & Shinbrot, T. Shear instabilities in granular flows. Nature 415, 302–305 (2002). https://doi.org/10.1038/415302a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415302a

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing