Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interstellar scintillation as the origin of the rapid radio variability of the quasar J1819+3845

Abstract

The liberation of gravitational energy as matter falls onto a supermassive black hole at the centre of a galaxy is believed to explain the high luminosity of quasars. The variability of this emission from quasars and other types of active galactic nuclei can provide information on the size of the emitting regions and the physical process of fuelling the black hole. Some active galactic nuclei are variable at optical (and shorter) wavelengths, and display radio outbursts over years and decades. These active galactic nuclei often also show faster intraday variability at radio wavelengths3,4. The origin of this rapid variability has been extensively debated5, but a correlation between optical and radio variations in some sources6,7 suggests that both are intrinsic. This would, however, require radiation brightness temperatures that seem physically implausible, leading to the suggestion that the rapid variations are caused by scattering of the emission by the interstellar medium inside our Galaxy8,9. Here we show that the rapid variations in the extreme case of quasar J1819+3845 (ref. 10) indeed arise from interstellar scintillation. The transverse velocity of the scattering material reveals the presence of plasma with a surprisingly high velocity close to the Solar System.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram showing the projection of the interstellar scintillation onto the Solar System.
Figure 2: Results of VLA and WSRT observations on 7 and 12 January 2001.
Figure 3: The calculated delays as a function of observing time for both days of observation.

Similar content being viewed by others

References

  1. Rees, M. J. Black hole models for active galactic nuclei. Annu. Rev. Astron. Astrophys. 22, 471–506 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Aller, H. D., Aller, M. F., Latimer, G. E. & Hodge, P. E. Spectra and linear polarizations of extragalactic variable sources at centimeter wavelengths. Astrophys. J. Suppl. Ser. 59, 513–768 (1985).

    Article  ADS  Google Scholar 

  3. Heeschen, D. S. Flickering of extragalactic radio sources. Astron. J. 89, 1111–1123 (1984).

    Article  ADS  Google Scholar 

  4. Quirrenbach, A., Witzel, A., Krichbaum, T., Hummel, C. A. & Alberdi, A. Rapid variability of extragalactic radio sources. Nature 337, 442–444 (1989).

    Article  ADS  Google Scholar 

  5. Wagner, S. J. & Witzel, A. Intraday variability in quasars and BL Lac objects. Annu. Rev. Astron. Astrophys. 33, 163–198 (1995).

    Article  ADS  Google Scholar 

  6. Wagner, S. J. et al. Rapid variability in S5 0716+714 across the electromagnetic spectrum. Astron. J. 111, 2187–2211 (1996).

    Article  ADS  Google Scholar 

  7. Peng, B. et al. Infrared, radio and optical variability of the BL Lacertae object 2007+777. Astron. Astrophys. 353, 937–943 (2000).

    ADS  Google Scholar 

  8. Rickett, B. J., Coles, W. A. & Bourgois, G. Slow scintillation in the interstellar medium. Astron. Astrophys. 134, 390–395 (1984).

    ADS  Google Scholar 

  9. Blandford, R., Narayan, R. & Romani, R. W. Flicker of extragalactic radio sources and refractive interstellar scintillation. Astrophys. J. 301, L53–L56 (1986).

    Article  ADS  Google Scholar 

  10. Dennett-Thorpe, J. & de Bruyn, A. G. The discovery of a microarcsecond quasar: J1819+3845. Astrophys. J. 529, L65–L68 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Narayan, R. The physics of pulsar scintillation. Phil. Trans. R. Soc. Lond. A 341, 151–165 (1992).

    Article  ADS  Google Scholar 

  12. Lang, K. R. & Rickett, B. J. Size and motion of the interstellar scintillation pattern from observations of CP1133. Nature 225, 528–530 (1970).

    Article  ADS  CAS  Google Scholar 

  13. Jauncey, D. L. et al. in Astrophysical Phenomena Revealed by Space VLBI, Proceedings of the VSOP Symposium, 2000 (eds Hirabayashi, H., Edwards, P. G. & Murphy, D. W.) 147–150 (Institute of Space and Astronautical Science, Tokyo, 2000).

    Google Scholar 

  14. Kedziora-Chudczer, L. et al. PKS 0405-385: The smallest radio quasar? Astrophys. J. 490, L9–L12 (1997).

    Article  ADS  Google Scholar 

  15. Dennett-Thorpe, J. & de Bruyn, A. G. in Galaxies and their Constituents at the Highest Angular Resolution (eds Schilizzi, R. T. et al.) 88–89 (IAU Symp. 205, Astronomical Society of the Pacific, San Francisco, 2000).

    Google Scholar 

  16. Hartmann, D. & Burton, W. Atlas of Galactic Neutral Hydrogen (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  17. Hamilton, P. A. & Lyne, A. G. Faraday rotation measurements on 163 pulsars. Mon. Not. R. Astron. Soc. 224, 1073–1081 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Bhat, N. D. R., Gupta, Y. & Rao, A. P. Pulsar scintillation and the Local Bubble. Astrophys. J. 500, 262–279 (1998).

    Article  ADS  Google Scholar 

  19. Taylor, J. H. & Cordes, J. M. Pulsar distances and the galactic distribution of free electrons. Astrophys. J. 411, 674–684 (1993).

    Article  ADS  Google Scholar 

  20. Cordes, J. M., Weisberg, J. M. & Boriakoff, V. Small-scale electron density turbulence in the interstellar medium. Astrophys. J. 288, 221–247 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Moran, J. M., Greene, B., Rodriguez, L. F. & Backer, D. C. The large scattering disk of NGC 6334B. Astrophys. J. 348, 147–152 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Cox, D. P. & Reynolds, R. J. The local interstellar medium. Annu. Rev. Astron. Astrophys. 25, 303–344 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Quirrenbach, A. et al. Statistics of intraday variability in extragalactic radio sources. Astron. Astrophys. 258, 279–284 (1992).

    ADS  Google Scholar 

  24. Rickett, B. J., Quirrenbach, A., Wegner, R., Krichbaum, T. P. & Witzel, A. Interstellar scintillation of the radio source 0917+624. Astron. Astrophys. 293, 479–492 (1995).

    ADS  Google Scholar 

  25. Kraus, A., Witzel, A. & Krichbaum, T. P. Intraday radio variability in active galactic nuclei. New Astron. Rev. 43, 685–689 (1999).

    Article  ADS  Google Scholar 

  26. Rickett, B. J., Witzel, A., Kraus, A., Krichbaum, T. P. & Qian, S. J. Annual modulation in the intraday variability of quasar 0917+624 due to interstellar scintillation. Astrophys. J. 550, L11–L14 (2001).

    Article  ADS  Google Scholar 

  27. Jauncey, D. L. & Macquart, J.-P. Intra-day variability and the interstellar medium towards 0917+624. Astron. Astrophys. 370, 9–12 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Briggs for the code used to predict the delays. This work was funded by the EU TMR network ‘CERES’. The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities. The WSRT operated by ASTRON is supported by the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. de Bruyn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dennett-Thorpe, J., de Bruyn, A. Interstellar scintillation as the origin of the rapid radio variability of the quasar J1819+3845. Nature 415, 57–60 (2002). https://doi.org/10.1038/415057a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415057a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing