Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-temperature ultrafast polariton parametric amplification in semiconductor microcavities

Abstract

Cavity polaritons, the elementary optical excitations of semiconductor microcavities, may be understood as a superposition of excitons and cavity photons1. Owing to their composite nature, these bosonic particles have a distinct optical response, at the same time very fast and highly nonlinear. Very efficient light amplification due to polariton–polariton parametric scattering has recently been reported in semiconductor microcavities at liquid-helium temperatures2,3,4,5,6,7,8,9,10,11. Here we demonstrate polariton parametric amplification up to 120 K in GaAlAs-based microcavities and up to 220 K in CdTe-based microcavities. We show that the cut-off temperature for the amplification is ultimately determined by the binding energy of the exciton. A 5-µm-thick planar microcavity can amplify a weak light pulse more than 5,000 times. The effective gain coefficient of an equivalent homogeneous medium would be 107 cm-1. The subpicosecond duration and high efficiency of the amplification could be exploited for high-repetition all-optical microscopic switches and amplifiers. 105 polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the pump–probe optical set-up and sample characteristics.
Figure 2: Main features of parametric gain: high efficiency, spectrally narrow lines, angular resonance and pump-power threshold.
Figure 3: Temperature dependence of parametric gain.
Figure 4

Similar content being viewed by others

References

  1. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  CAS  ADS  Google Scholar 

  2. Savvidis, P. G. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547–1551 (2000).

    Article  CAS  ADS  Google Scholar 

  3. Ehrenstein, D. Amplifier from half-breed particles. Phys. Rev. Focus 5, story 6 (2000).

    Google Scholar 

  4. Yamamoto, Y. Half-matter, half-light amplifier. Nature 405, 629–630 (2000).

    Article  CAS  Google Scholar 

  5. Ciuti, C., Schwendimann, P., Deveaud, B. & Quattropani, A. Theory of the angle-resonant polariton amplifier. Phys. Rev. B 62, R4825–R4828 (2000).

    Article  CAS  ADS  Google Scholar 

  6. Dasbach, G., Baars, T., Bayer, M., Larionov, A. & Forchel, A. Coherent and incoherent polaritonic gain in a planar semiconductor microcavity. Phys. Rev. B 62, 13076–13083 (2000).

    Article  CAS  ADS  Google Scholar 

  7. Houdré, R., Weisbuch, C., Stanley, R. P., Oesterle, U. & Ilegems, M. Nonlinear emission of semiconductor microcavities in the strong coupling regime. Phys. Rev. Lett. 85, 2793–2796 (2000).

    Article  ADS  Google Scholar 

  8. Stevenson, R. M. et al. Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Phys. Rev. Lett. 85, 3680–3683 (2000).

    Article  CAS  ADS  Google Scholar 

  9. Savvidis, P. G. et al. Asymmetric angular emission in semiconductor microcavities. Phys. Rev. B 62, R13278–R13281 (2000).

    Article  CAS  ADS  Google Scholar 

  10. Baumberg, J. J. et al. Parametric oscillation in a vertical microcavity: a polariton condensate or micro-optical parametric oscillation. Phys. Rev. B 62, R16247–R16250 (2000).

    Article  CAS  ADS  Google Scholar 

  11. Ciuti, C., Schwendimann, P. & Quattropani, A. Parametric luminescence of microcavity polaritons. Phys. Rev. B 63, 041303R-1–041303R-4 (2001).

    Article  ADS  Google Scholar 

  12. Imamoglu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers. Phys. Rev. A 53, 4250–4253 (1996).

    Article  CAS  ADS  Google Scholar 

  13. Huang, R., Tassone, F. & Yamamoto, Y. Experimental evidence of stimulated scattering of excitons into microcavity polaritons. Phys. Rev. B 61, R7854–R7857 (2000).

    Article  CAS  ADS  Google Scholar 

  14. Le Si, Dang, Heger, D., André, R., Boeuf, F. & Romestain, R. Stimulation of polariton photoluminescence in semiconductor microcavity. Phys. Rev. Lett. 81, 3920–3923 (1998).

    Article  ADS  Google Scholar 

  15. Bloch, J., Freixanet, T., Marzin, J. Y., Thierry-Mieg, V. & Planel, R. Giant Rabi splitting in a microcavity containing distributed quantum wells. Appl. Phys. Lett. 73, 1694–1696 (1998).

    Article  CAS  ADS  Google Scholar 

  16. Kelkar, P. V. et al. Stimulated emission, gain and coherent oscillations in II-VI semiconductor microcavities. Phys. Rev. B 56, 7564–7573 (1997).

    Article  CAS  ADS  Google Scholar 

  17. Ponce, F. A. & Bour, D. P. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351–359 (1997).

    Article  CAS  ADS  Google Scholar 

  18. Pearton, S. J., Zolper, J. C., Shul, R. J. & Ren, F. GaN: processing, defects, and devices. J. Appl. Phys. 86, 1–78 (1999).

    Article  CAS  ADS  Google Scholar 

  19. Lidzey, D. G. et al. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature 395, 53–56 (1998).

    Article  CAS  ADS  Google Scholar 

  20. Lidzey, D. G., Bradley, D. D. C., Armitage, A., Walker, S. & Skolnick, M. S. Photon-mediated hybridisation of Frenkel excitons in organic semiconductor microcavities. Science 288, 1620–1623 (2000).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank U. Oesterle and R. Houdré for growing the InGaAs sample, and J.D. Ganiere, G. Hayes, A. Quattropani, R. Romestain, P. Senellart and P. Schwendimann for suggestions. This work has been supported in part by the Fonds National Suisse de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saba, M., Ciuti, C., Bloch, J. et al. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities. Nature 414, 731–735 (2001). https://doi.org/10.1038/414731a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/414731a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing