Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photoselective adaptive femtosecond quantum control in the liquid phase

Abstract

Coherent light sources can be used to manipulate the outcome of light–matter interactions by exploiting interference phenomena in the time and frequency domain. A powerful tool in this emerging field of ‘quantum control’1,2,3,4,5,6 is the adaptive shaping of femtosecond laser pulses7,8,9,10, resulting, for instance, in selective molecular excitation. The basis of this method is that the quantum system under investigation itself guides an automated search, via iteration loops, for coherent light fields best suited for achieving a control task designed by the experimenter11. The method is therefore ideal for the control of complex experiments7,12,13,14,15,16,17,18,19,20. To date, all demonstrations of this technique on molecular systems have focused on controlling the outcome of photo-induced reactions in identical molecules, and little attention has been paid to selectively controlling mixtures of different molecules. Here we report simultaneous but selective multi-photon excitation of two distinct electronically and structurally complex dye molecules in solution. Despite the failure of single parameter variations (wavelength, intensity, or linear chirp control), adaptive femtosecond pulse shaping can reveal complex laser fields to achieve chemically selective molecular excitation. Furthermore, our results prove that phase coherences of the solute molecule persist for more than 100 fs in the solvent environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Spectral properties of the molecular systems.
Figure 3: Control of molecular excitation.
Figure 4: Experimental pulse shapes.

Similar content being viewed by others

References

  1. Warren, W. S., Rabitz, H. & Dahleh, M. Coherent control of quantum dynamics—The dream is alive. Science 259, 1581–1589 (1993).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Rice, S. A. & Zhao, M. Optical Control of Molecular Dynamics (Wiley, New York, 2000).

    Google Scholar 

  3. Rabitz, H., de Vivie-Riedle, R., Motzkus, M. & Kompa, K. Whither the future of controlling quantum phenomena? Science 288, 824–828 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Shapiro, M. & Brumer, P. Coherent control of atomic, molecular, and electronic processes. Adv. Atom. Mol. Opt. Phys. 42, 287–345 (2000).

    Article  ADS  CAS  Google Scholar 

  5. Tannor, D. J. & Rice, S. A. Control of selectivity of chemical reaction via control of wavepacket evolution. J. Chem. Phys. 83, 5013–5018 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Brixner, T., Damrauer, N. H. & Gerber, G. Femtosecond quantum control. Adv. Atom. Mol. Opt. Phys. 46, 1–54 (2001).

    Article  ADS  CAS  Google Scholar 

  7. Bardeen, C. J. et al. Feedback quantum control of molecular electronic population transfer. Chem. Phys. Lett. 280, 151–158 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Baumert, T., Brixner, T., Seyfried, V., Strehle, M. & Gerber, G. Femtosecond pulse shaping by an evolutionary algorithm with feedback. Appl. Phys. B 65, 779–782 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Yelin, D., Meshulach, D. & Silberberg, Y. Adaptive femtosecond pulse compression. Opt. Lett. 22, 1793–1795 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Brixner, T., Strehle, M. & Gerber, G. Feedback-controlled optimization of amplified femtosecond laser pulses. Appl. Phys. B 68, 281–284 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Judson, R. S. & Rabitz, H. Teaching lasers to control molecules. Phys. Rev. Lett. 68, 1500–1503 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Assion, A. et al. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282, 919–922 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Meshulach, D. & Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature 396, 239–242 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Weinacht, T. C., White, J. & Bucksbaum, P. H. Toward strong field mode-selective chemistry. J. Phys. Chem. A 103, 10166–10168 (1999).

    Article  CAS  Google Scholar 

  15. Weinacht, T. C., Ahn, J. & Bucksbaum, P. H. Controlling the shape of a quantum wavefunction. Nature 397, 233–235 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Hornung, T., Meier, R. & Motzkus, M. Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain. Chem. Phys. Lett. 326, 445–453 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Kunde, J. et al. Adaptive feedback control of ultrafast semiconductor nonlinearities. Appl. Phys. Lett. 77, 924–926 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Bartels, R. et al. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays. Nature 406, 164–166 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Levis, R. J., Menkir, G. M. & Rabitz, H. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292, 709–713 (2001).

    Article  ADS  CAS  Google Scholar 

  20. Brixner, T., Kiefer, B. & Gerber, G. Problem complexity in femtosecond quantum control. Chem. Phys. 267, 241–246 (2001).

    Article  CAS  Google Scholar 

  21. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Damrauer, N. H., Boussie, T. R., Devenney, M. & McCusker, J. K. Effects of intraligand electron delocalization, steric tuning, and excited-state vibronic coupling on the photophysics of aryl-substituted bipyridyl complexes of Ru(II). J. Am. Chem. Soc. 119, 8253–8268 (1997).

    Article  CAS  Google Scholar 

  23. Damrauer, N. H. & McCusker, J. K. Ultrafast dynamics in the metal-to-ligand charge transfer excited-state evolution of [Ru(4,4′-diphenyl-2,2′-bipyridine)3]2+. J. Phys. Chem. A 103, 8440–8446 (1999).

    Article  CAS  Google Scholar 

  24. Meyer, M., Mialocq, J. C. & Perly, B. Photoinduced intramolecular charge transfer and trans-cis isomerization of the DCM styrene dye. Picosecond and nanosecond laser spectroscopy, high-performance liquid chromatography, and nuclear magnetic resonance studies. J. Phys. Chem. 94, 98–104 (1990).

    Article  CAS  Google Scholar 

  25. Assion, A., Baumert, T., Helbing, J., Seyfried, V. & Gerber, G. Coherent control by a single phase shaped femtosecond laser pulse. Chem. Phys. Lett. 259, 488–494 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Broers, B., van Linden van den Heuvell, H. B. & Noordam, L. D. Efficient population transfer in a three-level ladder system by frequency-swept ultrashort laser pulses. Phys. Rev. Lett. 69, 2062–2065 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Bardeen, C. J., Wang, Q. & Shank, C. V. Selective excitation of vibrational wave-packet motion using chirped pulses. Phys. Rev. Lett. 75, 3410–3413 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Cerullo, G., Bardeen, C. J., Wang, Q. & Shank, C. V. High-power femtosecond chirped pulse excitation of molecules in solution. Chem. Phys. Lett. 262, 362–368 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Meshulach, D. & Silberberg, Y. Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses. Phys. Rev. A 60, 1287–1292 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Lalović, D., Davidović, D. M. & Bijedić, N. Quantum mechanics in terms of non-negative smoothed Wigner functions. Phys. Rev. A 46, 1206–1212 (1992).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Coherent Control Network (COCOMO) and the Fonds der Chemischen Industrie. N.D. thanks the Alexander von Humboldt-Stiftung for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gerber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brixner, T., Damrauer, N., Niklaus, P. et al. Photoselective adaptive femtosecond quantum control in the liquid phase. Nature 414, 57–60 (2001). https://doi.org/10.1038/35102037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35102037

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing