Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Absence of deep-water formation in the Labrador Sea during the last interglacial period

Abstract

The two main constituent water masses of the deep North Atlantic Ocean—North Atlantic Deep Water at the bottom and Labrador Sea Water at an intermediate level—are currently formed in the Nordic seas and the Labrador Sea, respectively1. The rate of formation of these two water masses tightly governs the strength of the global ocean circulation and the associated heat transport across the North Atlantic Ocean2. Numerical simulations have suggested a possible shut-down of Labrador Sea Water formation as a consequence of global warming3. Here we use micropalaeontological data and stable isotope measurements in both planktonic and benthic foraminifera from deep Labrador Sea cores to investigate the density structure of the water column during the last interglacial period, which was thought to be about 2 °C warmer than present4. Our results indicate that today's stratification between Labrador Sea Water and North Atlantic Deep Water never developed during the last interglacial period. Instead, a buoyant surface layer was present above a single water mass originating from the Nordic seas. Thus the present situation, with an active site of intermediate-water formation in the Labrador Sea, which settled some 7,000 years ago, has no analogue throughout the last climate cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Arctic–North Atlantic sector and the location of the study cores.
Figure 2: Structure of the modern water column at the Greenland rise site.
Figure 3: Estimation of potential-density values from proxies.
Figure 4: Magnified views of Holocene and ISS-5e records.

Similar content being viewed by others

References

  1. Marshall, J. & Schott, F. Open-ocean convection; observations, theory, and models. Rev. Geophys. 37, 1–64 (1999).

    Article  ADS  Google Scholar 

  2. Weaver, A. J., Bitz, C. M., Fanning, A. M. & Holland, M. Thermohaline circulation: High latitude phenomena and the difference between the Pacific and Atlantic. Annu. Rev. Earth Planet. Sci. 27, 231–285 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Wood, R. A., Keen, A. B., Mitchell, J. F. B. & Gregory, J. M. Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature 399, 572–575 (1999).

    Article  ADS  CAS  Google Scholar 

  4. White, J. W. C. Don’t touch that dial. Nature 364, 186 (1993)

    Article  ADS  Google Scholar 

  5. Aagaard, K., Swift, J. H. & Carmack, E. C. Thermohaline circulation in the Arctic Mediterranean seas. J. Geophys. Res. 90, 4833–4846 (1985).

    Article  ADS  Google Scholar 

  6. Dickson, R. R. & Brown, J. The production of North Atlantic deep water: Sources, sinks and pathways. J. Geophys. Res. 99, 12319–12341 (1994).

    Article  ADS  Google Scholar 

  7. McCartney, M. S. Recirculating components to the deep boundary current of the northern North Atlantic. Prog. Oceanogr. 29, 283–383 (1992).

    Article  ADS  Google Scholar 

  8. McCartney, M. S. & Talley, L. D. Warm-to-cold water conversion in the northern North Atlantic Ocean. J. Phys. Oceanogr. 14, 922–935 (1984).

    Article  ADS  Google Scholar 

  9. Schmitz, W. J. Jr & McCartney, M. S. On the North Atlantic circulation. Rev. Geophys. 31, 29–49 (1993).

    Article  ADS  Google Scholar 

  10. Talley, L. D. & McCartney, M. S. Distribution and circulation of Labrador Sea Water. J. Phys. Oceanogr. 12, 1189–1205 (1982).

    Article  ADS  Google Scholar 

  11. Dickson, R. R., Lazier, J., Meincke, J., Rhines, P. & Swift, J. Long-term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr. 38, 205–239 (1996).

    Article  Google Scholar 

  12. Shackleton, N. J. Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev. 6, 183–190 (1987).

    Article  ADS  Google Scholar 

  13. Yu, E. F., Francois, R. & Bacon, M. P. Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379, 689–694 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Keigwin, L. D., Curry, W. B., Lehman, S. J. & Johnsen, S. The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago. Nature 371, 323–326 (1994).

    Article  ADS  Google Scholar 

  15. Adkins, J. F., Boyle, E. A., Keigwin, L. & Cortijo, E. Variability of the North Atlantic thermohaline circulation during the last interglacial period. Nature 390, 154–156 (1997).

    Article  ADS  CAS  Google Scholar 

  16. de Vernal, A., Rochon, A., Turon, J.-L. & Matthiessen, J. Organic-walled dinoflagellate cysts: palynological tracers of sea-surface conditions in middle to high latitude marine environments. Geobios 30, 905–920 (1997).

    Article  Google Scholar 

  17. National Oceanographic Data Center World Ocean Atlas CR-ROM (National Oceanic and Atmospheric Administration, Boulder, 1994).

  18. Hillaire-Marcel, C., de Vernal, A., Bilodeau, G. & Stoner, J. Changes of potential density gradients in the northwestern North Atlantic during the last climatic cycle based on a multiproxy approach. Am. Geophys. Union. Monogr. (in the press).

  19. Kohfeld, K. E., Fairbanks, R. G., Smith, S. L. & Walsh, I. D. Neogloboquadrina pachyderma (sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from Northeast Water Polynya plankton tows, sediment traps, and surface sediment. Paleoceanography 11, 679–699 (1996).

    Article  ADS  Google Scholar 

  20. Andreasen, D. J & Ravelo, A. Tropical Pacific Ocean thermocline depth reconstruction for the last glacial maximum. Paleoceanography 2, 395–413 (1997).

    Article  ADS  Google Scholar 

  21. Faul, K., Ravelo, A. C. & Delanay, M. L. Reconstructions of upwelling, productivity, and photic zone depth in the eastern equatorial Pacific ocean using planktonic foraminiferal stable isotopes and abundances. J. Foram. Res. 30, 110–125 (2000).

    Article  Google Scholar 

  22. Bond, G. et al. Pervasive millennial-scale cycle in the North Atlantic Holocene and glacial climate. Science 278, 1257–1266 (1997).

    Article  ADS  CAS  Google Scholar 

  23. de Vernal, A. et al. Sea-ice cover and sea surface conditions in the Arctic and circum-Arctic during the Holocene: Preliminary results and methodological issues. Can. Geophys. Union Mtg (abstr.) (2000).

  24. Dickson, R. R., Meincke, J., Malmberg, S. A. & Lee, A. J. The “great salinity anomaly” in the Northern North Atlantic 1968–1982. Prog. Oceanogr. 20, 103–151 (1988).

    Article  ADS  Google Scholar 

  25. de Vernal, A., Miller, G. & Hillaire-Marcel, C. Paleoenvironments of the last interglacial sensu lato in northwest North Atlantic regions: eastern Canada and adjacent seas. Quat Int. 10-12, 95–106 (1991).

    Article  Google Scholar 

  26. Shackleton, N. J. in Méthodes Quantitatives d’étude des Variations du Climat au Cours du Pléistocène (ed. Labeyrie, J.) 203–209 (Editions du CNRS, Paris, 1974).

    Google Scholar 

  27. Wu, G.-P. & Hillaire-Marcel, C. Oxygen isotope compositions of sinistral Neogloboquadrina pachyderma tests in surface sediments: North Atlantic Ocean. Geochim. Cosmochim. Acta 58, 1303–1312 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).

    Article  ADS  Google Scholar 

  29. Hillaire-Marcel, C. (ed.). The Labrador Sea during the late Quaternary. Can. J. Earth Sci. (Special issue) 31 (1994).

  30. Stoner, J. S., Channell, J. E. T. & Hillaire-Marcel, C. A 200 kyr geomagnetic stratigraphy for the Labrador Sea: Indirect correlation of the sediment record to SPECMAP. Earth Planet. Sci. Lett. 159, 165–181 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This study is a contribution to the Climate System, History and Dynamics project, supported by the National Science and Engineering Research Council of Canada, and to the international Images program. Complementary support by the Fonds pour la Formation de chercheurs et l’Aide à la Recherche of Quebec Province is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hillaire-Marcel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillaire-Marcel, C., de Vernal, A., Bilodeau, G. et al. Absence of deep-water formation in the Labrador Sea during the last interglacial period. Nature 410, 1073–1077 (2001). https://doi.org/10.1038/35074059

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35074059

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing