Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels

Abstract

Calcium regulation of gene expression is critical for the long-lasting activity-dependent changes in cellular electrical properties that underlie important physiological functions such as learning and memory1. Cellular electrical properties are diversified through the extensive alternative splicing of ion channel pre-messenger RNAs2; however, the regulation of splicing by cell signalling pathways has not been well explored. Here we show that depolarization of GH3 pituitary cells represses splicing of the STREX exon3 in BK potassium channel transcripts through the action of Ca2+/calmodulin-dependent protein kinases (CaMKs). Overexpressing constitutively active CaMK IV, but not CaMK I or II, specifically decreases STREX inclusion in the mRNA. This decrease is prevented by mutations in particular RNA repressor sequences. Transferring 54 nucleotides from the 3′ splice site upstream of STREX to a heterologous gene is sufficient to confer CaMK IV repression on an otherwise constitutive exon. These experiments define a CaMK IV-responsive RNA element (CaRRE), which mediates the alternative splicing of ion channel pre-mRNAs. The CaRRE presents a unique molecular target for inducing long-term adaptive changes in cellular electrical properties. It also provides a model system for dissecting the effect of signal transduction pathways on alternative splicing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depolarization-induced changes in STREX splicing depend on CaMK.
Figure 2: CaMK IV overexpression represses STREX exon inclusion in HEK cells.
Figure 3: STREX RNA elements responsive to CaMK IV repression in HEK cells.
Figure 4: The CaRRE responds to depolarization in GH3 cells.
Figure 5: CaMK IV repression and a CaRRE in other ion channel exons. a, Exons SloII87, and 5 (E5) and (E21) of NMDAR1 inserted into pDUP4-1.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Data deposits

The genomic DNA sequences for mouse STREX and SloII87 have been deposited in GenBank under accession numbers AF295094 and AF295095, respectively.

References

  1. Finkbeiner, S. & Greenberg, M. E. Ca2+ channel-regulated neuronal gene expression. J. Neurobiol. 37, 171– 189 (1998).

    Article  CAS  Google Scholar 

  2. Coetzee, W. A. et al. Molecular diversity of K+ channels. Ann. N. Y. Acad. Sci. 868, 233– 285 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Xie, J. & McCobb, D. P. Control of alternative splicing of potassium channels by stress hormones. Science 280, 443– 446 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates, Sunderland, MA, 1992).

    Google Scholar 

  5. Lingle, C. J., Solaro, C. R., Prakriya, M. & Ding, J. P. Calcium-activated potassium channels in adrenal chromaffin cells. Ion Channels 4, 261– 301 (1996).

    Article  CAS  Google Scholar 

  6. Butler, A., Tsunoda, S., McCobb, D. P., Wei, A. & Salkoff, L. MSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science 261, 221– 224 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Lagrutta, A., Shen, K.-Z., North, R. A. & Adelman, J. P. Functional differences among alternatively spliced variants of Slowpoke, a Drosophila calcium-activated potassium channel. J. Biol. Chem. 269, 20347– 20351 (1994).

    CAS  PubMed  Google Scholar 

  8. Tseng-Crank, J. et al. Cloning, expression, and distribution of functionally distinct Ca2+-activated K+ channel isoforms from human brain. Neuron 13, 1315– 1330 (1994).

    Article  CAS  Google Scholar 

  9. Navaratnam, D. S., Bell, T. J., Tu, T. D., Cohen, E. L. & Oberholtzer, J. C. Differential distribution of Ca2+-activated K+ channel splice variants among hair cells along the tonotopic axis of the chick cochlea. Neuron 19, 1077– 1085 (1997).

    Article  CAS  Google Scholar 

  10. Rosenblatt, K. P., Sun, Z.-P., Heller, S. & Hudspeth, A. J. Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chicken's cochlea. Neuron 19, 1061– 1075 (1997).

    Article  CAS  Google Scholar 

  11. Jones, E. M. C., Gray-Keller, M. & Fettiplace, R. The role of Ca2+-activated K+ channel spliced variants in the tonotopic organization of the turtle cochlea. J. Physiol. (Cambridge) 518, 653– 665 (1999).

    Article  CAS  Google Scholar 

  12. Saito, M., Nelson, C., Salkoff, L. & Lingle, C. J. A cysteine-rich domain defined by a novel exon in a Slo variant in rat adrenal chromaffin cells and PC12 cells. J. Biol. Chem. 272, 11710– 11717 (1997).

    Article  CAS  Google Scholar 

  13. Ramanathan, K., Michael, T. H., Jiang, G.-J., Hiel, K. & Fuchs, P. A. A molecular mechanism for electrical tuning of cochlear hair cells. Science 283, 215– 217 (1999).

    Article  CAS  Google Scholar 

  14. Shipston, M. J., Duncan, R. R., Clark, A. G., Antoni, F. A. & Tian, L. Molecular components of large conductance calcium-activated potassium (BK) channels in mouse pituitary corticotropes. Mol. Endocrinol. 13, 1728– 1737 (1999).

    Article  CAS  Google Scholar 

  15. Ferrer, J., Wasson, J., Salkoff, L. & Permutt, M. A. Cloning of human pancreatic islet large conductance Ca2+-activated K+ channel (hSlo) cDNAs: Evidence for high levels of expression in pancreatic islets and identification of a flanking genetic marker. Diabetologia 39, 891– 898 (1996).

    Article  CAS  Google Scholar 

  16. Soderling, T. R. The Ca2+-calmodulin-dependent protein kinase cascade. Trends Biochem. Sci. 24, 232– 236 (1999).

    Article  CAS  Google Scholar 

  17. Modafferi, E. F. & Black, D. L. A complex intronic splicing enhancer from the c-src pre-mRNA activates inclusion of a heterologous exon. Mol. Cell. Biol. 17, 6537– 6545 (1997).

    Article  CAS  Google Scholar 

  18. Sun, P., Lou, L. & Maurer, R. A. Regulation of activating transcription factor-1 and the cAMP response element-binding protein by Ca2+/calmodulin-dependent protein kinases type I, II, and IV. J. Biol. Chem. 271, 3066– 3073 (1996).

    Article  CAS  Google Scholar 

  19. Sun, P., Enslen, H., Myung, P. S. & Maurer, R. A. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8, 2527– 2539 (1994).

    Article  CAS  Google Scholar 

  20. Chatila, T., Anderson, K. A., Ho, N. & Means, A. R. A unique phosphorylation-dependent mechanism for the activation of Ca2+/calmodulin-dependent protein kinase type IV/GR. J. Biol. Chem. 271, 21542– 21548 (1996).

    Article  CAS  Google Scholar 

  21. Miranti, C. K., Ginty, D. D., Huang, G., Chatila, T. & Greenberg, M. E. Calcium activates serum response factor-dependent transcription by a Ras- and Elk-1-independent mechanism that involves a Ca2+/calmodulin-dependent kinase. Mol. Cell. Biol. 15, 3672– 3684 (1995).

    Article  CAS  Google Scholar 

  22. Dominski, Z. & Kole, R. Selection of splice sites in pre-mRNAs with short internal exons. Mol. Cell. Biol. 11, 6075– 6083 (1991).

    Article  CAS  Google Scholar 

  23. Modafferi, E. F. & Black, D. L. Combinatorial control of a neuron-specific exon. RNA 5, 687– 706 (1999).

    Article  CAS  Google Scholar 

  24. Lopez, A. J. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu. Rev. Genet. 32, 279– 305 (1998).

    Article  CAS  Google Scholar 

  25. Smith, C. & Valcarcel, J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381– 388 (2000).

    Article  CAS  Google Scholar 

  26. Zhang, L., Ashiya, M., Sherman, T. G. & Grabowski, P. J. Essential nucleotides direct neuron-specific splicing of gamma-2 pre-mRNA. RNA 2, 682– 698 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, L., Liu, W. & Grabowski, P. J. Coordinate repression of a trio of neuron-specific splicing events by the splicing regulator PTB. RNA 5, 117– 130 (1999).

    Article  CAS  Google Scholar 

  28. Chou, M.-Y., Underwood, J. G., Nikolic, J. M., Luu, M. H. T. & Black, D. L. Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src neural-specific splicing. Mol. Cell 5, 949– 957 (2000).

    Article  CAS  Google Scholar 

  29. Ahn, S., Ginty, D. D. & Linden, D. J. A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron 23, 559– 568 (1999).

    Article  CAS  Google Scholar 

  30. Spitzer, N. C. & Ribera, A. B. Development of electrical excitability in embryonic neurons: Mechanisms and roles. J. Neurobiol. 37, 190– 197 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Chatila for the CaMK I and IV-dCT plasmids, and suggesting the use of KN93; M. Greenberg for the CaMK IV-dCTK75E plasmid; R. Maurer for the CaMK II-dCT plasmid; T. Soderling for the CaMK IV (HMDT→DEDD) plasmid; B. Howard for PC12 cells. We are grateful to R. Harris-Warrick, D. McCobb, K. Lynch, G. Chanfreau, P. Boutz, J. Underwood, K. Martin, M. Barad and H. Herschman for comments on the manuscript. This work is supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas L. Black.

Supplementary information

Figure 1.

CaMK IV expression and activity. a. Blot of GH3 and HEK proteins probed with a CaMK IV-specific antibody. U1 70K is a protein loading control. b. Western blots with anti-Flag tag antibody of proteins from untransfected HEK 293 cells (lane 1), or cells transfected with Flag-tagged CaMK IV-dCT (lane 2), CaMK IV-dCTK75E (lane 3) or the pcDNA3.1(+) vector (lane 4). U1 70K and anti-phospho-CREB-Ser133 antibodies were used to probe the same membrane. All the CaMK-dCT plasmids including CaMK I-dCT and CaMK II-dCT were active as measured by increased Ser133 phosphorylation of co-expressed CREB proteins. (JPG 16.4 KB)

Figure 2.

STREX intron sequences and the 3' splice site affect STREX exon inclusion. a. pDUPST2 is similar to pDUPST1 but with much shorter intron sequences. Black bar: STREX exon. The M1 and M2 mutations are the same as in Fig. 3c. b. Primer extension assay of RNA from HEK cells transfected with pDUPST1 (ST1, lane 1), nothing (NT, lane2), wild type pDUPST2 (WT, lanes 3-5) and its mutants D56 (lanes 6-8), M1 (lanes 9-11), M2 (lanes 12-14), and double mutants D56+M1( lanes 15-17) or D56+M2 (lanes 18-20). These were cotransfected with CaMK IV-dCT(IV, lanes 4, 7, 10, 13, 16, and 19) or CaMK IV-dCTK75E( IVm, lanes 5, 8, 11, 14, 17 and 20). DUPST2 (lane 3) shows reduced exon inclusion compared to DUPST1 (lane 1), due to the loss of intron sequences. c. Percent decrease in STREX inclusion by CaMK IV-dCT for each plasmid in b (average ± SD, n = 3), relative to the same plasmid without CaMK IV-dCT. (JPG 29.5 KB)

Figure 3.

A full length but Ca++-independent CaMK IV (HMDT->DEDD) represses exon inclusion through the CaRRE element similarly to CaMK IV-dCT. Primer extension assay of RNA from HEK cells transfected with pDUP175 (lanes 1-3), pDUP175ST (lanes 4-6), and its M2 mutant (lanes 7-9). These cells were cotransfected with CaMK IV(HMDT->DEDD) (IV, lanes 2, 5 and 8 ), or its vector pME18S (Vec, lanes 3, 6 and 9) as indicated. Splicing of the pDUP175ST central exon with the CaRRE upstream is strongly repressed by CaMK IV(HMDT->DEDD), whereas splicing of the pDUP175 and pDUP175STM2 central exons is not affected. (JPG 12.6 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, J., Black, D. A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410, 936–939 (2001). https://doi.org/10.1038/35073593

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35073593

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing