Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling

Abstract

The bacterial flagellar filament is a helical propeller constructed from 11 protofilaments of a single protein, flagellin. The filament switches between left- and right-handed supercoiled forms when bacteria switch their swimming mode between running and tumbling. Supercoiling is produced by two different packing interactions of flagellin called L and R. In switching from L to R, the intersubunit distance (52 Å) along the protofilament decreases by 0.8 Å. Changes in the number of L and R protofilaments govern supercoiling of the filament. Here we report the 2.0 Å resolution crystal structure of a Salmonella flagellin fragment of relative molecular mass 41,300. The crystal contains pairs of antiparallel straight protofilaments with the R-type repeat. By simulated extension of the protofilament model, we have identified possible switch regions responsible for the bi-stable mechanical switch that generates the 0.8 Å difference in repeat distance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Cα backbone trace, hydrophobic core distribution and structural information of F41.
Figure 2: The β-folium fold.
Figure 3: Crystal packing of F41 in two orthogonal views.
Figure 4: Docking of a single protofilament model into the density map of the filament.
Figure 5: Axial interactions in the protofilament.
Figure 6: Simulated extension of the protofilament showing the possible switch region.

References

  1. Berg, H. C. & Anderson, R. A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Silverman, M. & Simon, M. Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73–74 (1974).

    Article  ADS  CAS  Google Scholar 

  3. Kudo, S., Magariyama, Y. & Aizawa, S.-I. Abrupt changes in flagellar rotation observed by laser dark-field microscopy. Nature 346, 677–680 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Ryu, W. S., Berry. R. M. & Berg, H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–447 (2000).

    Article  ADS  CAS  Google Scholar 

  5. Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W. W. & Adler, J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249, 74–77 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Macnab, R. M. & Ornston, M. K. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J. Mol. Biol. 112, 1–30 (1977).

    Article  CAS  Google Scholar 

  7. Turner, L., Ryu, W. S. & Berg, H. C. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793–2801 (2000).

    Article  CAS  Google Scholar 

  8. O'Brien, E. J. & Bennett, P. M. Structure of straight flagella from a mutant Salmonella. J. Mol. Biol. 70, 133–152 (1972).

    Article  CAS  Google Scholar 

  9. Asakura, S. Polymerization of flagellin and polymorphism of flagella. Adv. Biophys. (Japan) 1, 99–155 (1970).

    CAS  Google Scholar 

  10. Calladine, C. R. Construction of bacterial flagella. Nature 225, 121–124 (1975).

    Article  ADS  Google Scholar 

  11. Calladine, C. R. Design requirements for the construction of bacterial flagella. J. Theor. Biol. 57, 469–489 (1976).

    Article  CAS  Google Scholar 

  12. Calladine, C. R. Change of waveform in bacterial flagella: The role of mechanics at the molecular level. J. Mol. Biol. 118, 457–479 (1978).

    Article  CAS  Google Scholar 

  13. Kamiya, R. & Asakura, S. Helical transformations of Salmonella flagella in vitro. J. Mol. Biol. 106, 167–186 (1976).

    Article  CAS  Google Scholar 

  14. Kamiya, R. & Asakura, S. Flagellar transformations at alkaline pH. J. Mol. Biol. 108, 513–518 (1977).

    Article  Google Scholar 

  15. Hotani, H. Micro-video study of moving bacterial flagellar filaments III. Cyclic transformation induced by mechanical force. J. Mol. Biol. 156, 791–806 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Kamiya, R., Asakura, S., Wakabayashi, K. & Namba, K. Transition of bacterial flagella from helical to straight forms with different subunit arrangements. J. Mol. Biol. 131, 725–742 (1979).

    Article  CAS  Google Scholar 

  17. Yamashita, I. et al. Structure and switching of bacterial flagellar filament studied by X-ray fiber diffraction. Nature Struct. Biol. 5, 125–132 (1998).

    Article  CAS  Google Scholar 

  18. Mimori, Y. et al. The structure of the R-type straight flagellar filament of Salmonella at 9 Å resolution by electron cryomicroscopy. J. Mol. Biol. 249, 69–87 (1995).

    Article  CAS  Google Scholar 

  19. Morgan, D. G., Owen, C., Melanson, L. A. & DeRosier, D. J. Structure of bacterial flagellar filaments at 11 Å resolution: Packing of the α-helices. J. Mol. Biol. 249, 88–110 (1995).

    Article  CAS  Google Scholar 

  20. Mimori-Kiyosue, Y., Vonderviszt, F., Yamashita, I., Fujiyoshi, Y. & Namba, K. Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament. Proc. Natl Acad. Sci. USA 93, 15108–15113 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Mimori-Kiyosue, Y., Vonderviszt, F. & Namba, K. Locations of terminal segments of flagellin in the filament structure and their roles in polymerization and polymorphism. J. Mol. Biol. 270, 222–237 (1997).

    Article  CAS  Google Scholar 

  22. Mimori-Kiyosue, Y., Yamashita, I., Fujiyoshi, Y., Yamaguchi, S. & Namba, K. Role of the outermost subdomain of Salmonella flagellin in the filament structure revealed by electron cryomicroscopy. J. Mol. Biol. 284, 521–530 (1998).

    Article  CAS  Google Scholar 

  23. Samatey, F. A., Imada, K., Vonderviszt, F., Shirakihara, Y. & Namba, K. Crystallization of the F41 fragment of flagellin and data collection from extremely thin crystals. J. Struct. Biol. 132, 106–111 (2000).

    Article  CAS  Google Scholar 

  24. Vonderviszt, F., Uedaira, H., Kidokoro, S. -I. & Namba, K. Structural organization of flagellin. J. Mol. Biol. 214, 97–104 (1990).

    Article  CAS  Google Scholar 

  25. Honda, S., Uedaira, H., Vonderviszt, F., Kidokoro, S. -I. & Namba, K. Folding energetics of a multidomain protein, flagellin. J. Mol. Biol. 293, 719–732 (1999).

    Article  CAS  Google Scholar 

  26. Yoshioka, K., Aizawa, S. -I. & Yamaguchi, S. Flagellar filament structure and cell motility of Salmonella typhimurium mutants lacking part of the outer domain of flagellin. J. Bacteriol. 177, 1090–1093 (1995).

    Article  CAS  Google Scholar 

  27. Nogales, E., Sharon, G. W., & Downing, K. H. Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Yamashita, I. et al. Radial mass analysis of the flagellar filament of Salmonella: Implications for subunit folding. J. Mol. Biol. 253, 547–558 (1995).

    Article  CAS  Google Scholar 

  29. Namba, K., Yamashita, I. & Vonderviszt, F. Structure of the core and central channel of bacterial flagella. Nature 342, 648–654 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Vonderviszt, F., Aizawa, S. -I. & Namba, K. Role of the disordered terminal regions of flagellin in filament formation and stability. J. Mol. Biol. 221, 1461–1474 (1991).

    Article  CAS  Google Scholar 

  31. Mandelkow, E. -M., Mandelkow, E. & Milligan, R. A. Microtubule dynamics and microtubule caps: A time-resolved cryo-electron microscopy study. J Cell Biol. 114, 977–991 (1991).

    Article  CAS  Google Scholar 

  32. Corpet, F., Gouzy, J. & Kahn, D. The ProDom database of protein domain families. Nucleic Acids Res. 26, 323–326 (1998).

    Article  CAS  Google Scholar 

  33. Kanto, S., Okino, H., Aizawa, S. -I. & Yamaguchi, S. Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin. J. Mol. Biol. 219, 471–480 (1991).

    Article  CAS  Google Scholar 

  34. Kamiya, R., Asakura, S. & Yamaguchi, S. Formation of helical filaments by copolymerization of two types of ‘straight’ flagellins. Nature 286, 628–630 (1980).

    Article  ADS  CAS  Google Scholar 

  35. Yonekura, K. et al. The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. Science 290, 2148–2152 (2000).

    Article  ADS  CAS  Google Scholar 

  36. Yamamoto, M., Kumasaka, T., Fujisawa, T. & Ueki, T. Trichromatic concept at Spring-8 RIKEN beamline I. J. Synchrotron Rad. 5, 222–225 (1998).

    Article  CAS  Google Scholar 

  37. Ueki, T. & Yamamoto, M. The start of a new generation: the present status of the Spring-8 synchrotron and its use in structural biology. Structure 7, R183–R187 (1999).

    Article  CAS  Google Scholar 

  38. Otwinowski, Z. & Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode (Academic, New York, 1997).

    Book  Google Scholar 

  39. Leslie, A. G. W. CCP4/ESF-EACMB. Newslett. Protein Crystallogr. Vol. 26 (Daresbury Laboratory, Warrington, UK, 1992).

  40. Collaborative Computational Project Number 4. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  41. Jones, T. A., Zhou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  42. Terwilliger, T. C. & Berendzen, J. Automated structure solution for MIR and MAD. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  43. Brünger, A. T., Kuriyan, J. & Karplus, M. Crystallography R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  44. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  45. Merritt, E. A. & Bacon, D. J. Raster3D: Photorealistic molecular graphics. Methods Enzymol. 277, 505–524. (1997).

    Article  CAS  Google Scholar 

  46. Sayle, R. A. & Milner-White, E. J. RasMol: Biomolecular graphics for all. Trends Biochem. Sci. 20, 374–376 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Tomizaki, L. Dumon, W. Burmeister, S. Arzt and S. Wakatsuki at ESRF, and M. Kawamoto, N. Kamiya and K. Miura at SPring-8 for technical help with beamlines. We also thank I. Yamashita and K. Hasegawa for a mutant strain of Salmonella that produces SJW1655-derived site-directed mutant flagellin (G365C), which forms the R-type straight flagellar filament, and helpful information of heavy-atom binding to the filament; J. Tame for critically reading the manuscript; and S. Asakura, T. Nitta and F. Oosawa for continuous support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Namba.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samatey, F., Imada, K., Nagashima, S. et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331–337 (2001). https://doi.org/10.1038/35066504

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35066504

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing