Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gate-induced superconductivity in a solution-processed organic polymer film

A Retraction to this article was published on 06 March 2003

Abstract

The electrical and optical properties of conjugated polymers have received considerable attention in the context of potentially low-cost replacements for conventional metals and inorganic semiconductors. Charge transport in these organic materials has been characterized in both the doped-metallic and the semiconducting state1,2,3,4, but superconductivity has not hitherto been observed in these polymers. Here we report a distinct metal–insulator transition and metallic levels of conductivity in a polymer field-effect transistor. The active material is solution-cast regioregular poly(3-hexylthiophene), which forms relatively well ordered films owing to self-organization, and which yields a high charge carrier mobility (0.05–0.1 cm2 V-1 s-1) at room temperature. At temperatures below 2.35 K with sheet carrier densities exceeding 2.5 × 1014 cm-2, the polythiophene film becomes superconducting. The appearance of superconductivity seems to be closely related to the self-assembly properties of the polymer, as the introduction of additional disorder is found to suppress superconductivity. Our findings therefore demonstrate the feasibility of tuning the electrical properties of conjugated polymers over the largest range possible—from insulating to superconducting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic structure of the polythiophene field-effect device used in this study.
Figure 2: Channel resistance of a polythiophene field-effect device as a function of temperature for various carrier concentrations.
Figure 3: Channel resistance of a polythiophene field-effect device as a function of temperature for various magnetic fields up to 9 T.
Figure 4: Channel resistance as a function of temperature for polymer thin films with different degrees of disorder.

Similar content being viewed by others

References

  1. Chiang, C. K. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Skotheim, T. A., Elsenbaumer, R. L. & Reynolds, J. R. (eds) Handbook of Conjugated Polymers (Marcel Dekker, New York, 1996).

    Google Scholar 

  3. Mark, J. (ed.) Physical Properties of Polymers Handbook (AIP Press, New York, 1996).

    Google Scholar 

  4. Nalwa, H. S. Handbook of Organic Conductive Molecules and Polymers (Wiley, Chichester, 1997).

    Google Scholar 

  5. Aleshin, A., Kiebooms, R., Reghu, M. & Heeger, A. J. Electronic transport in doped poly(3,4-ethylenedioxythiophene) near the metal-insulator transition. Synth. Met. 90, 61–68 (1997).

    Article  CAS  Google Scholar 

  6. Ahlskog, M. & Menon, R. Charge transport in conducting polymers near the critical and insulating regimes. Phys. Status Solidi B 205, 305–310 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Kim, J. H. et al. Structural aspects of metal-insulator transition in doped conducting polymers. Synth. Met. 84, 71–72 (1997).

    Article  CAS  Google Scholar 

  8. Masubuchi, S. & Kazama, S. Intrinsic transport properties in electrochemically prepared polythiophene doped with PF-6. Synth. Met. 74, 151–158 (1995).

    Article  CAS  Google Scholar 

  9. Bao, Z., Dodabalapur, A. & Lovinger, A. J. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 4108–4110 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Österbacka, R., An, C. P., Jiang, X. M. & Vardeny, Z. V. Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science 287, 839–842 (2000).

    Article  ADS  Google Scholar 

  12. McCullogh, R. D., Tristramnagle, S., Williams, S. P., Lowe, R. D. & Jayaraman, M. Self-orienting head-to-tail poly(3-alkylthiophenes)—New insights on structure-property relationship in conducting polymers. J. Am. Chem. Soc. 115, 4910–4911 (1993).

    Article  Google Scholar 

  13. Sirringhaus, H., Tessler, N. & Friend, R. H. Integrated optoelectronic devices based on conjugated polymers. Science 280, 1741–1744 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Dodabalapur, A. et al. Organic smart pixels. Appl. Phys. Lett. 73, 142–144 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Kobashi, M. & Takeuchi, H. Inhomogeneity of spin-coated and cast non-regioregular poly(3-hexylthiophene) films. Structures and electrical and photophysical properties. Macromolecules 31, 7273–7278 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Ishiguro, T., Yamaji, K. & Saito, G. Organic Superconductors (Springer, Berlin, 1998).

    Book  Google Scholar 

  17. Gunnarsson, O. Superconductivity in fullerides. Rev. Mod. Phys. 69, 575–606 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Schön, J. H., Kloc, Ch. & Batlogg, B. Superconductivity in molecular crystals induced by charge injection. Nature 406, 702–704 (2000).

    Article  ADS  Google Scholar 

  19. Schön, J. H., Berg, S., Kloc, Ch. & Batlogg, B. Ambipolar pentacene field-effect transistors and inverters. Science 287, 1022–1023 (2000).

    Article  ADS  Google Scholar 

  20. Schön, J. H., Kloc, Ch. & Batlogg, B. Normal and inverse Meyer-Neldel rule in nanocrystalline pentacene field-effect transistors. Phys. Status Solidi B 121, R4–R5 (2000).

    Article  Google Scholar 

  21. Schön, J. H., Kloc, Ch., Haddon, R. C. & Batlogg, B. A Superconducting field-effect switch. Science 288, 656–658 (2000).

    Article  ADS  Google Scholar 

  22. Schön, J. H., Kloc, Ch. & Batlogg, B. Superconductivity at 52 K in hole-doped C60. Nature 408, 549–552 (2000).

    Article  ADS  Google Scholar 

  23. Ahn, C. H. et al. Electrostatic modulation of superconductivity in ultrathin GdBa2Cu3O7-x films. Science 284, 1152–1155 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Horowitz, G. & Hajlaoui, M. E. Mobility in polycrystalline oligothiophene field effect transistors dependent on grain size. Adv. Mater. 12, 1046–1050 (2000).

    Article  CAS  Google Scholar 

  25. Schön, J. H., Kloc, Ch. & Batlogg, B. Charge transport in oligothiophene single crystals. Synth. Met. 115, 75–78 (2000).

    Article  Google Scholar 

  26. Knupfer, M. et al. Size of electron-hole pairs in π-conjugated systems. Phys. Rev. Lett. 83, 1443–1446 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Simanek, E. Inhomogeneous Superconductors: Granular and Quantum Effects (Oxford Univ. Press, New York, 1994).

    Google Scholar 

  28. Lovinger, A. J., Katz, H. E. & Dodabalapur, A. Direct imaging of conducting and insulating submolecularly wide pathways in an organic semiconductor. Chem. Mater. 10, 3275–3278 (1998).

    Article  CAS  Google Scholar 

  29. Crone, B. et al. Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521–523 (2000).

    Article  ADS  CAS  Google Scholar 

  30. Mooij, J. E. et al. Josephson persistent-current qubit. Science 285, 1036–1039 (1999).

    Article  CAS  Google Scholar 

  31. Verthamer, N. R., Helfand, E. & Hohenberg, P. C. Temperature and purity dependence of the superconducting field, Hc2, III. Electron spin and spin-orbit effects. Phys. Rev. 147, 295–303 (1966).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank E. A. Chandross, B. Crone, H. E. Katz, H. Y. Hwang, A. J. Lovinger and T. Siegrist for discussions, and E. Bucher for the use of equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Schön.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, J., Dodabalapur, A., Bao, Z. et al. Gate-induced superconductivity in a solution-processed organic polymer film. Nature 410, 189–192 (2001). https://doi.org/10.1038/35065565

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065565

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing