Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Earthquake slip on oceanic transform faults

Abstract

Oceanic transform faults are one of the main types of plate boundary, but the manner in which they slip remains poorly understood. Early studies suggested that relatively slow earthquake rupture might be common1,2; moreover, it has been reported that very slow slip precedes some oceanic transform earthquakes, including the 1994 Romanche earthquake3,4,5. The presence of such detectable precursors would have obvious implications for earthquake prediction. Here we model broadband seismograms of body waves to obtain well-resolved depths and rupture mechanisms for 14 earthquakes on the Romanche and Chain transform faults in the equatorial Atlantic Ocean. We found that earthquakes on the longer Romanche transform are systematically deeper than those on the neighbouring Chain transform. These depths indicate that the maximum depth of brittle failure is at a temperature of 600 °C in oceanic lithosphere. We find that the body waves from the Romanche 1994 earthquake can be well modelled with relatively deep slip on a single fault, and we use the mechanism and depth of this earthquake to recalculate its source spectrum. The previously reported slow precursor can be explained as an artefact of uncertainties in the assumed model parameters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the equatorial Mid-Atlantic Ridge, showing the Romanche and Chain transform faults and also the bathymetry26,27.
Figure 2: Comparison of the waveforms from six earthquakes, three on each of the Romanche and Chain transforms.
Figure 3: Inversion for slip distribution in the 14 March 1994 Romanche earthquake (Mw 7.1).
Figure 4: Long-period source spectra of the 1994 Romanche transform earthquake (Mw 7.0).
Figure 5: Depth and temperature of earthquakes on the Romanche and Chain transforms.

Similar content being viewed by others

References

  1. Kanamori, H. & Stewart, G. S. Mode of the strain release along the Gibbs fracture zone, Mid-Atlantic Ridge. Phys. Earth Planet. Inter. 11, 312–332 (1976).

    Article  ADS  Google Scholar 

  2. Okal, E. A. & Stewart, L. M. Slow earthquakes along oceanic fracture zones: evidence for aesthenospheric flow away from hotspots? Earth Planet. Sci. Lett. 57, 75–87 (1992).

    Article  ADS  Google Scholar 

  3. Ihmlé, P. F. & Jordan, T. M. Teleseismic search for slow precursors to large earthquakes. Science 266, 1547–1551 (1994).

    Article  ADS  Google Scholar 

  4. McGuire, J. J., Ihmlé, P. F. & Jordan, T. H. Time domain observations of a slow precursor to the 1994 Romanche transform earthquake. Science 274, 82–85 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Ihmlé, P. F., Harabaglia, P. & Jordan, T. H. Teleseismic detection of a slow precursor to the great 1989 Macquarie Ridge earthquake. Science 261, 177–183 (1993).

    Article  ADS  Google Scholar 

  6. Sibson, R. H. Fault zone models, heat flow and the depth distribution of earthquakes in the continental crust of the United States. Bull. Seismol. Soc. Am. 72, 151–163 (1982).

    Google Scholar 

  7. Wiens, D. A. & Stein, S. Age dependence of oceanic intraplate seismicity and implications for lithospheric evolution. J. Geophys. Res. 88, 6455–6468 (1983).

    Article  ADS  Google Scholar 

  8. Engeln, J. F., Wiens, D. A. & Stein, S. Mechanisms and depths of Atlantic transform faults. J. Geophys. Res. 91, 548–577 (1986).

    Article  ADS  Google Scholar 

  9. Bergman, E. A. & Solomon, S. C. Transform fault earthquakes in the North Atlantic: source mechanisms and depth of faulting. J. Geophys. Res. 93, 9027–9057 (1988).

    Article  ADS  Google Scholar 

  10. Wilcock, W. S. D., Purdy, G. M. & Solomon, S. C. Microearthquake evidence for extensions across the Kane transform fault. J. Geophys. Res. 95, 15439–15462 (1990).

    Article  ADS  Google Scholar 

  11. Kanamori, H. & Kikuchi, M. The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments. Nature 361, 714–716 (1993).

    Article  ADS  Google Scholar 

  12. Kedar, S., Watada, S. & Tanimoto, T. The 1989 Macquarie Ridge earthquake: seismic moment estimation from long period free oscillations. J. Geophys. Res. 99, 17893–17907 (1994).

    Article  ADS  Google Scholar 

  13. Velasco, A. A., Ammon, C. J. & Lay, T. Source time function complexity of the great 1989 Macquarie Ridge earthquake. J. Geophys. Res. 100, 3989–4009 (1995).

    Article  ADS  Google Scholar 

  14. Silver, P. G. & Jordan, T. H. Total-moment spectra of fourteen large earthquakes. J. Geophys. Res. 88, 3273–3293 (1983).

    Article  ADS  Google Scholar 

  15. Dziewonski, A. M. & Woodhouse, J. H. An experiment in systematic study of global seismicity: centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981. J. Geophys. Res. 88, 3247–3271 (1983).

    Article  ADS  Google Scholar 

  16. Dziewonski, A. M., Ekström, G. & Maternovskaya, N.-N. Centroid-moment tensor solutions for October–December. Phys. Earth Planet. Inter. 115, 1–16 (1999).

    Article  ADS  Google Scholar 

  17. Abercrombie, R. E. & Mori, J. J. Local observations of the onset of a large earthquakes: 28 June 1992 Landers, California. Bull. Seismol. Soc. Am. 84, 725–734 (1994).

    Google Scholar 

  18. Wesnousky, S. G. Seismological and structural evolution of strike-slip faults. Nature 335, 340–343 (1988).

    Article  ADS  Google Scholar 

  19. Harris, R. A. & Day, S. M. Dynamic 3D simulations of earthquakes on en echelon faults. Geophys. Res. Lett. 26, 2089–2092 (1999).

    Article  ADS  Google Scholar 

  20. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 2, 297–356 (1981).

    Article  ADS  Google Scholar 

  21. Kanamori, H. & Anderson, D. L. Theoretical basis for some empirical relations in seismology. Bull. Seismol. Soc. Am. 65, 1073–1095 (1975).

    Google Scholar 

  22. Chen, Y. Thermal model of oceanic transform faults. J. Geophys. Res. 93, 8839–8851 (1988).

    Article  ADS  Google Scholar 

  23. Detrick, R. S., White, R. S. & Purdy, G. M. Crustal structure of North Atlantic fracture zones. Rev. Geophys. 31, 439–458 (1993).

    Article  ADS  Google Scholar 

  24. Brune, J. N. Seismic moment, seismicity and rate of slip along major fault zones. J. Geophys. Res. 73, 777–784 (1968).

    Article  ADS  Google Scholar 

  25. DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. Current plate motions. Geophys. J. Int. 101, 425–478 (1990).

    Article  ADS  Google Scholar 

  26. Smith, W. H. F. & Sandwell, D. T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 277, 1956–1962 (1997).

    Article  CAS  Google Scholar 

  27. Wessel, P. & Smith, W. H. F. Free software helps map and display data. Eos 72, 441, 445–446 (1991).

    Article  Google Scholar 

  28. Ekström, G. A very broadband inversion method for the recovery of earthquake source parameters. Tectonophysics 166, 73–100 (1989).

    Article  ADS  Google Scholar 

  29. Antolik, M., Kaverina, A. & Dreger, D. Compound rupture of the great 1998 Antarctic plate earthquake. J. Geophys. Res. 105, 23825–23838 (2000).

    Article  ADS  Google Scholar 

  30. McKenzie, D. P. Speculations on the consequences and causes of plate motions. Geophys. J. R. Astron. Soc. 18, 1–32 (1969).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Antolik for assistance with the slip inversion, and J. Tromp for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel E. Abercrombie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abercrombie, R., Ekström, G. Earthquake slip on oceanic transform faults. Nature 410, 74–77 (2001). https://doi.org/10.1038/35065064

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065064

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing