Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possible presence of high-pressure ice in cold subducting slabs

Abstract

During the subduction of oceanic lithosphere, water is liberated from minerals by progressive dehydration reactions1,2 and is thought to be critical to several geologically important processes such as island-arc volcanism3, intermediate-depth seismicity4 and chemical exchange between the subducting lithosphere and mantle5. Although dehydration reactions would yield supercritical fluid water in most slabs, we report here that the stable phase of H2O should be solid ice VII in portions of the coldest slabs. The formation of ice VII as a dehydration product would affect the generation, storage, transport and release of water in cold subduction zones and equilibrium conditions of dehydration would shift, potentially affecting the depths of seismogenesis and magmagenesis. Large amounts of pure ice VII might accumulate during subduction and, as a sinking slab warms, eventual melting of the ice would release large amounts of water in a small region over a short period of time, with a significant positive volume change. Moreover, the decreasing availability of fluid water, owing to the accumulation of ice VII and its subsequent reaction products in a cooling planetary interior (for example, in Mars or the future Earth), might eventually lead to a decline in tectonic activity or its complete cessation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The melting curve of ice VII.

Similar content being viewed by others

References

  1. Wood, B. J., Pawley, A. & Frost, D. R. Water and carbon in the Earth's mantle. Phil. Trans. R. Soc. Lond. A 354, 1495–1511 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Bose, K. & Navrotsky, A. Thermochemistry and phase equilibria of hydrous phases in the system MgO-SiO2-H2O: Implications for volatile transport to the mantle. J. Geophys. Res. 103, 9713–9719 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Hirschmann, M. M., Asimov, P. D., Ghiorso, M. S. & Stolper, E. M. Calculation of peridotite partial melting from thermodynamic models of minerals and melts. III. Controls on isobaric melt production and the effect of water on melt production. J. Petrol. 40, 831–851 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Green, H. W. II & Houston, H. The mechanics of deep earthquakes. Annu. Rev. Earth Planet. Sci. 23, 169–213 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Regelous, M., Collerson, K., Ewart, A. & Wendt, J. I. Trace element transport rates in subduction zones: Evidence from Th, Sr, Pb isotope data for Tonga-Kermadec lavas. Earth Planet. Sci. Lett. 150, 291–302 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Fei, Y., Mao, H.-K. & Hemley, R. J. Thermal expansivity, bulk modulus, and melting curve of H2O-ice VII to 20 GPa. J. Chem. Phys. 99, 5369–5373 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Wolanin, E. et al. Equation of state of ice VII up to 106 GPa. Phys. Rev. B 56, 5781–5785 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Belonoshko, A. & Saxena, S. K. A molecular dynamics study of the pressure-volume-temperature properties of super-critical fluids: I. H2O. Geochim. Cosmochim. Acta 55, 381–387 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Peacock, S. M. The importance of blueschist → eclogite dehydration reactions in subducting oceanic crust. Geol. Soc. Am. Bull. 105, 684–694 (1993).

    Article  ADS  Google Scholar 

  10. Helffrich, G. in Subduction Top to Bottom, Geophysical Monograph 96 (eds Bebout, G. E., Scholl, D. W., Kirby, S. H. & Platt, J. P.) 215–222 (American Geophysical Union, Washington DC, 1996).

    Google Scholar 

  11. Ono, S. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: Implications for water transport in subduction zones. J. Geophys. Res. 103, 18253–18267 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Iwamori, H. Transportation of H2O and melting in subduction zones. Earth Planet. Sci. Lett. 160, 65–80 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Smyth, J. R. A crystallographic model for hydrous wadsleyite (β - Mg2SiO4): An ocean in the Earth's interior? Am. Mineral. 79, 1021–1024 (1994).

    Google Scholar 

  14. Schmidt, M. W. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Baer, B. J., Brown, J. M., Zaug, J. M., Schiferl, D. & Chronister, E. L. Impulsive stimulated scattering in ice VI and ice VII. J. Chem. Phys. 108, 4540–4544 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Shimizu, H., Nabetani, T., Nishiba, T. & Sasaki, S. High-pressure elastic properties of the VI and VII phase of ice in dense H2O and D2O. Phys. Rev. B 53, 6107–6110 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Goncharov, A. F., Struzhkin, V. V., Mao, H. & Hemley, R. J. Raman spectroscopy of dense H2O and the transition to symmetric hydrogen bonds. Phys. Rev. Lett. 83, 1998–2001 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Klotz, S. et al. Metastable ice VII at low temperature and ambient pressure. Nature 398, 681–684 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Kirby, S. H., Stein, S., Okal, E. A. & Rubie, D. C. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophys. 34, 261–306 (1996).

    Article  ADS  Google Scholar 

  20. Zhao, D. et al. Depth extent of the Lau back-arc spreading center and its relation to subduction processes. Science 278, 254–257 (1997).

    Article  CAS  Google Scholar 

  21. Sleep, N. H. Martian plate tectonics. J. Geophys. Res. 99, 5639–5655 (1994).

    Article  ADS  Google Scholar 

  22. Sohl, F. & Spohn, T. The interior structure of Mars: Implications from SNC meteorites. J. Geophys. Res. 102, 1613–1635 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Toksöz, M. N., Sleep, N. H. & Smith, A. T. Evolution of the downgoing lithosphere and the mechanisms of deep focus earthquakes. Geophys. J. R. Astron. Soc. 35, 285–310 (1973).

    Article  Google Scholar 

  24. Stein, C. A. & Stein, S. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359, 123–129 (1992).

    Article  ADS  Google Scholar 

  25. Davies, J. H. & Stevenson, D. J. Physical model of source region of subduction zone volcanics. J. Geophys. Res. 97, 2037–2070 (1992).

    Article  ADS  Google Scholar 

  26. Bevis, M. et al. Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc. Nature 374, 249–251 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Kincaid, C. & Sacks, I. S. Thermal and dynamical evolution of the upper mantle in subduction zones. J. Geophys. Res. 102, 12295–12315 (1997).

    Article  ADS  Google Scholar 

  28. Datchi, F., Loubeyre, P. & LeToullec, R. Extended and accurate determination of the melting curves of argon, helium, ice (H2O), and hydrogen (H2). Phys. Rev. B 61, 6535–6546 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Loubeyre, P., LeToullec, R., Wolanin, E., Hanfland, M. & Hausermann, D. Modulated phases and proton centring in ice observed by X-ray diffraction up to 170 GPa. Nature 397, 503–506 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Robie, R. A. & Hemingway, B. S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. US Geol. Surv. Bull. 2131, 1–461 (1995).

    Google Scholar 

  31. Pawley, A. R. & Wood, B. J. The low-pressure stability of phase A, Mg7Si2O8(OH)6. Contrib. Mineral. Petrol. 124, 90–97 (1996).

    Article  ADS  CAS  Google Scholar 

  32. Gottschalk, M. Internally consistent thermodynamic data for minerals in the system SiO2-TiO2-Al2O3-Fe2O3-CaO-MgO-FeO-K2O-Na2O-H2O-CO2. Eur. J. Mineral. 9, 175–223 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Hemley and J. Longhi for helpful comments. C.R.B. acknowledges the support of the US National Science Foundation and of the Earthquake Research Institute of the University of Tokyo. A.N. acknowledges the support of the Center for High-Pressure Research, an NSF Science and Technology Center, and of the Kreeger-Wolf Endowment at Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig R. Bina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bina, C., Navrotsky, A. Possible presence of high-pressure ice in cold subducting slabs. Nature 408, 844–847 (2000). https://doi.org/10.1038/35048555

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35048555

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing