Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mitochondrial genome variation and the origin of modern humans

A Corrigendum to this article was published on 29 March 2001

Abstract

The analysis of mitochondrial DNA (mtDNA) has been a potent tool in our understanding of human evolution, owing to characteristics such as high copy number, apparent lack of recombination1, high substitution rate2 and maternal mode of inheritance3. However, almost all studies of human evolution based on mtDNA sequencing have been confined to the control region, which constitutes less than 7% of the mitochondrial genome. These studies are complicated by the extreme variation in substitution rate between sites, and the consequence of parallel mutations4 causing difficulties in the estimation of genetic distance and making phylogenetic inferences questionable5. Most comprehensive studies of the human mitochondrial molecule have been carried out through restriction-fragment length polymorphism analysis6, providing data that are ill suited to estimations of mutation rate and therefore the timing of evolutionary events. Here, to improve the information obtained from the mitochondrial molecule for studies of human evolution, we describe the global mtDNA diversity in humans based on analyses of the complete mtDNA sequence of 53 humans of diverse origins. Our mtDNA data, in comparison with those of a parallel study of the Xq13.3 region7 in the same individuals, provide a concurrent view on human evolution with respect to the age of modern humans.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The relationship between linkage disequilibrium, measured by |D ′| versus distance between nucleotide sites for all 53 complete human mtDNA genomes.
Figure 2: Neighbour-joining phylogram based on complete mtDNA genome sequences (excluding the D-loop).
Figure 3: Mismatch distributions of pairwise nucleotide differences between mtDNA genomes (excluding the D-loop).
Figure 4: Data matrices showing all informative nucleotide positions, in decreasing order of frequency.

Similar content being viewed by others

References

  1. Olivio, P. D., Van de Walle, M. J., Laipis, P. J. & Hauswirth, W. W. Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Nature 306, 400– 402 (1983).

    Article  ADS  Google Scholar 

  2. Brown, W. M., George, M. Jr & Wilson, A. C. Rapid evolution of animal mitochondrial DNA. Proc. Natl Acad. Sci. USA 76, 1967– 1971 (1979).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. Maternal inheritance of human mitochondrial DNA. Proc. Natl Acad. Sci. USA 77, 6715–6719 (1980).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512– 526 (1993).

    CAS  PubMed  Google Scholar 

  5. Maddison, D. R., Ruvolo, M. & Swofford, D. L. Geographic origins of human mitochondrial DNA: phylogenetic evidence from control region sequences. Syst. Biol. 41, 111–124 (1992).

    Article  Google Scholar 

  6. Torroni, A. et al. mtDNA analysis reveals a major late Paleolithic population expansion from southwestern to northeastern Europe. Am. J. Hum. Genet. 62, 1137–1152 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaessmann, H., Heissig, F., von Haeseler, A. & Paabo, S. DNA sequence variation in a non-coding region of low recombination on the human X chromosome. Nature Genet. 22, 78 –81 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Strimmer, K. & von Haesseler, A. Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13, 964–969 (1996).

    Article  CAS  Google Scholar 

  9. Sarich, V. M. & Wilson, A. C. Generation time and genomic evolution in primates. Science 179, 1144– 1147 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Andrews, P. Evolution and environment in the Hominoidea. Nature 360, 641–646 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Kumar, S. & Hedges, S. B. A molecular timescale for vertebrate evolution. Nature 392, 917– 920 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Awadalla, P., Eyre-Walker, A. & Smith, J. M. Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science 286, 2524– 2525 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Eyre-Walker, A., Smith, N. H. & Smith, J. M. How clonal are human mitochondria? Proc. R. Soc. Lond. B 266, 477–483 (1999).

    Article  CAS  Google Scholar 

  14. Kumar, S., Hedrick, P. & Stoneking, M. Questioning evidence for recombination in human mitochondrial DNA. Science 288, 1931 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  15. Lewontin, R. C. The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49, 49– 67 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. & Wilson, A. C. African populations and the evolution of human mitochondrial DNA. Science 253, 1503–1507 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Cann, R. L., Stoneking, M. & Wilson, A. C. Mitochondrial DNA and human evolution. Nature 325, 31–36 ( 1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Wolpoff, M. H. in The Human Revolution: Behavioural and Biological Perspectives on the Origins of Modern Humans (eds Mellars, P. & Stringer, C.) 62–108 (Princeton Univ. Press, Princeton, New Jersey, 1989).

    Google Scholar 

  19. Horai, S., Hayasaka, K., Kondo, R., Tsugane, K. & Takahata, N. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc. Natl Acad. Sci. USA 92, 532–536 ( 1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ruvolo, M. et al. Mitochondrial COII sequences and modern human origins. Mol. Biol. Evol. 10, 1115–1135 (1993).

    CAS  PubMed  Google Scholar 

  21. Templeton, A. R. Human origins and analysis of mitochondrial DNA sequences. Science 255, 737 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Nei, M. Age of the common ancestor of human mitochondrial DNA. Mol. Biol. Evol. 9, 1176–1178 ( 1992).

    CAS  PubMed  Google Scholar 

  23. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS  PubMed  Google Scholar 

  24. Zietkiewicz, E. et al. Genetic structure of the ancestral population of modern humans. J. Mol. Evol. 47, 146– 155 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 ( 1992).

    CAS  PubMed  Google Scholar 

  26. Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 133, 693– 709 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rozas, J. & Rozas, R. DnaSP, DNA sequence polymorphism: an interactive program for estimating population genetics parameters from DNA sequence data. Comput. Appl. Biosci. 11, 621–625 (1995).

    CAS  PubMed  Google Scholar 

  29. Klein, R. G. The Human Career: Human Biological and Cultural Origins (Univ. Chicago Press, Chicago, 1989).

    Google Scholar 

  30. Reider, M. J., Taylor, S. L., Tobe, V. O. & Nickerson, D. A. Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome. Nucleic Acids Res. 26, 967–973 ( 1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Stoneking for his advice regarding the analysis of recombination, and L. Cavalli-Sforza, G. Destro-Bisol, L. Excoffier, T. Jenkins, K. Kidd, J. Kidd, G. Klein, R. Mahabeer, V. Nasidze, E. Poloni, H. Soodyall, M. Stoneking, M. Voevoda and S. Wells for scmples. This work was supported by grants from Swedish Natural Sciences Research Council and Beijer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Gyllensten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingman, M., Kaessmann, H., Pääbo, S. et al. Mitochondrial genome variation and the origin of modern humans. Nature 408, 708–713 (2000). https://doi.org/10.1038/35047064

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35047064

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing