Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolution of the Sun's large-scale magnetic field since the Maunder minimum

Abstract

The most striking feature of the Sun's magnetic field is its cyclic behaviour. The number of sunspots, which are dark regions of strong magnetic field on the Sun's surface, varies with a period of about 11 years. Superposed on this cycle are secular changes that occur on timescales of centuries and events like the Maunder minimum in the second half of the seventeenth century, when there were very few sunspots1,2. A part of the Sun's magnetic field reaches out from the surface into interplanetary space, and it was recently discovered3 that the average strength of this interplanetary field has doubled in the past 100 years. There has hitherto been no clear explanation for this doubling. Here we present a model describing the long-term evolution of the Sun's large-scale magnetic field, which reproduces the doubling of the interplanetary field. The model indicates that there is a direct connection between the length of the sunspot cycle and the secular variations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of the magnetic field and brightness on the solar surface.
Figure 2: Evolution of the open magnetic flux at the solar surface since the end of the Maunder minimum in 1700.

Similar content being viewed by others

References

  1. Ribes, J. C. & Nesme-Ribes, E. The solar sunspot cycle in the Maunder minimum AD1645 to AD1715. Astron. Astrophys. 276, 549–563 (1993).

    ADS  Google Scholar 

  2. Beer, J., Blinov, A., Bonani, G., Hofmann, H. J. & Finkel, R. C. Use of 10Be in polar ice to trace the 11-year cycle of solar activity. Nature 347, 164–166 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Lockwood, M., Stamper, R. & Wild, M. N. A doubling of the Sun's coronal magnetic field during the past 100 years. Nature 399, 437– 439 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Harvey, K. L. & Zwaan, C. Properties and emergence of bipolar active regions. Sol. Phys. 148, 85– 118 (1993).

    Article  ADS  Google Scholar 

  5. Sheeley, N. R. in The Solar Cycle (ed. Harvey, K. L.) 1–13 (Astronomical Society of the Pacific, ASP Conf. Series Vol. 27, San Francisco, 1992).

    Google Scholar 

  6. Wang, Y. M. & Sheeley, N. R. The rotation of photospheric magnetic fields: A random walk transport model. Astrophys. J. 430, 399–412 (1994).

    Article  ADS  Google Scholar 

  7. Wang, Y.-M., Lean, J. & Sheeley, N. R. The long-term variation of the Sun's open magnetic flux. Geophys. Res. Lett. 27, 505– 508 (2000).

    Article  ADS  Google Scholar 

  8. Wang, Y.-M., Sheeley, N. R. & Lean, J. Understanding the evolution of the Sun's open magnetic flux. Geophys. Res. Lett. 27, 621– 624 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Schrijver, C. J. et al. Large-scale coronal heating by the small-scale magnetic field of the Sun. Nature 394, 152– 154 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Howard, R. & Labonte, B. J. Surface magnetic fields during the solar activity cycle. Sol. Phys. 74, 131–145 (1981).

    Article  ADS  Google Scholar 

  11. Harvey, K. L. in Solar Surface Magnetism (eds Rutten, R. J. & Schrijver, C. J.) 347–363 (Kluwer, Dordrecht, 1994).

    Book  Google Scholar 

  12. Livingston, W. C., Harvey, J., Slaughter, C. & Trumbo, D. Solar magnetograph employing integrated diode arrays. Appl. Opt. 15, 40–52 ( 1976).

    Article  ADS  CAS  Google Scholar 

  13. Schrijver, C. J. & Harvey, K. L. The photospheric magnetic flux budget. Sol. Phys. 150, 1– 18 (1994).

    Article  ADS  Google Scholar 

  14. Chapman, G. A., Cookson, A. M. & Dobias, J. J. Solar variability and the relation of facular to sunspot areas during solar cycle 22. Astrophys. J. 482, 541–545 (1997).

    Article  ADS  Google Scholar 

  15. Fligge, M., Solanki, S. K., Unruh, Y. C., Fröhlich, C. & Wehrli, C. A model of solar total and spectral irradiance variations. Astron. Astrophys. 355, 709–718 (1998).

    ADS  Google Scholar 

  16. Dicke, R. H. Solar luminosity and the sunspot cycle. Nature 280, 24–27 (1979).

    Article  ADS  Google Scholar 

  17. Hoyng, P. Is the solar cycle timed by a clock? Sol. Phys. 169 , 253–264 (1996).

    Article  ADS  Google Scholar 

  18. Wang, Y. M. & Sheeley, N. R. Solar implications of ULYSSES interplanetary field measurements. Astrophys. J. 447 , L143–L146 (1995).

    ADS  Google Scholar 

  19. Wilson, P. R., Altrock, R. C., Harvey, K. L., Martin, S. F. & Snodgrass, H. B. The extended solar activity cycle. Nature 333, 748– 750 (1988).

    Article  ADS  Google Scholar 

  20. Harvey, K. L. in The Solar Cycle (ed. Harvey, K. L.) 335–367 (Astronomical Society of the Pacific, ASP Conf. Series Vol. 27, San Francisco, 1992).

    Google Scholar 

  21. Friis-Christensen, E. & Lassen, K. Length of the solar cycle: An indicator of solar activity closely associated with climate. Science 254, 698–700 ( 1991).

    Article  ADS  CAS  Google Scholar 

  22. Svensmark, H. & Friis-Christensen, E. Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships. J. Atmos. Terr. Phys. 59, 1225– 1232 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Svensmark, H. Influence of cosmic rays on Earth's climate. Phys. Rev. Lett. 81, 5027–5030 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Scherrer, P. H. et al. The Solar Oscillations Investigation—Michelson Doppler Imager. Sol. Phys. 162, 129– 188 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J. Beer and M. Lockwood provided the 10Be record and the record of the reconstructed interplanetary magnetic field, respectively. We are grateful to K. Schrijver for comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Solanki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solanki, S., Schüssler, M. & Fligge, M. Evolution of the Sun's large-scale magnetic field since the Maunder minimum . Nature 408, 445–447 (2000). https://doi.org/10.1038/35044027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35044027

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing