Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A regulator of transcriptional elongation controls vertebrate neuronal development

Abstract

The development of distinct vertebrate neurons is defined by the unique profiles of genes that neurons express. It is accepted that neural genes are regulated at the point of transcription initiation, but the role of messenger RNA elongation in neural gene regulation has not been examined1,2,3. Here we describe the mutant foggy, identified in a genetic screen for mutations that affect neuronal development in zebrafish4, that displayed a reduction of dopamine-containing neurons and a corresponding surplus of serotonin-containing neurons in the hypothalamus. Positional cloning disclosed that Foggy is a brain-enriched nuclear protein that is structurally related to the transcription elongation factor Spt5 (refs 5,6,7,8,9,10,11 ,12). Foggy is not part of the basic transcription apparatus but a phosphorylation-dependent, dual regulator of transcription elongation. The mutation disrupts its repressive but not its stimulatory activity. Our results provide molecular, genetic and biochemical evidence that negative regulators of transcription elongation control key aspects of neuronal development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The foggy mutation disrupts neuronal development.
Figure 2: Identification of the foggy gene.
Figure 3: Sequence and domain structure of the Foggy protein.
Figure 4: The V1012D mutation abolishes the negative but not positive function of Foggy in transcription elongation.

Similar content being viewed by others

References

  1. Greenblatt, J. RNA polmerase II holoenzyme and transciptional regulation. Curr. Opin. Cell Biol. 9, 310–319 (1997).

    Article  CAS  Google Scholar 

  2. Shilatifard, A., Conaway, J. W. & Conaway, R. C. Mechanism and regulation of transcriptional elongation and termination by RNA polymerase II. Curr. Opin. Genet. Dev. 7, 199–204 (1997).

    Article  CAS  Google Scholar 

  3. Uptain, S. M., Kane, C. M. & Chamberlain, M. J. Basic mechanisms of transcript elongation and its regulation. Annu. Rev. Biochem. 66, 117– 172 (1997).

    Article  CAS  Google Scholar 

  4. Guo, S. et al. Mutations in the zebrafish unmask shared regulatory pathways controlling the development of catecholaminergic neurons. Dev. Biol. 208, 473–487 (1999).

    Article  CAS  Google Scholar 

  5. Swanson, M. S., Malone, E. A. & Winston, F. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol. Cell Biol. 11, 3009–3019 (1991).

    Article  CAS  Google Scholar 

  6. Swanson, M. S. & Winston, F. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Genetics 132, 325–326 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hartzog, G. A., Wada, T., Handa, H. & Winston, F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12, 357–369 (1998).

    Article  CAS  Google Scholar 

  8. Wada, T., Takagi, T., Yamaguchi, Y., Watanabe, D. & Hande, H. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J. 17, 7395– 7403 (1998).

    Article  CAS  Google Scholar 

  9. Yamaguchi, Y. et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41–51 (1999).

    Article  CAS  Google Scholar 

  10. Yamaguchi, Y. et al. Structure and function of the human transcription elongation factor DSIF. J. Biol. Chem. 274, 8085– 8092 (1999).

    Article  CAS  Google Scholar 

  11. Wada, T. et al. DSFI, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev. 12, 343–356 (1998).

    Article  CAS  Google Scholar 

  12. Yamaguchi, Y., Wada, T. & Handa, H. Interplay between positive and negative elongation factors: drawing a new view of DRB. Genes Cells 3, 9– 15 (1998).

    Article  CAS  Google Scholar 

  13. Cepko, C. L. The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. Curr. Opin. Neurobiol. 9, 37–46 (1999).

    Article  CAS  Google Scholar 

  14. Vos, P. et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414 (1995).

    Article  CAS  Google Scholar 

  15. Higashijima, S., Okamoto, H., Ueno, N., Hotta, Y. & Eguchi, G. High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles of the whole body by using promoters of zebrafish origin. Dev. Biol. 192, 289 –299 (1997).

    Article  CAS  Google Scholar 

  16. Sullivan, S. L. & Gottesman, M. E. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell 68, 989–994 (1992).

    Article  CAS  Google Scholar 

  17. Sullivan, S. L., Ward, D. F. & Gottesman, M. E. Effect of Escherichia coli nusG function on lambda N-mediated transcription antitermination. J. Bacteriol. 174, 1339–1344 ( 1992).

    Article  CAS  Google Scholar 

  18. Kyrpides, N. C., Woese, C. R. & Ouzounis, C. A. KOW: a novel motif linking a bacterial transcription factor with ribosomal proteins. Trends Biochem. 21, 425–426 (1996).

    Article  CAS  Google Scholar 

  19. Hubbard, E. J., Dong, Q., Greenwald, I. Evidence for physical and functional association between EMB-5 and LIN-12 in Caenorhabditis elegans. Science 273, 112–115 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360– 1363 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Chen, Z. F., Paquette, A. J. & Anderson, D. J. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nature Genet. 20, 136–142 ( 1998).

    Article  CAS  Google Scholar 

  22. Anderson, D. J. & Jan, Y. N. in Molecular and Cellular Approaches to Neural Development (ed. Cowan, W. M.) 26 –63 (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  23. Zorick, T. S., Syroid, D. E., Brown, A., Gridley, T. & Lemke, G. Krox-20 controls SCIP expression, cell cycle exit and susceptibility to apoptosis in developing myelinating Schwann cells. Development 126, 1397–1406 (1999).

    CAS  PubMed  Google Scholar 

  24. Turner, C. A. Jr, Mack, D. H. & Davis, M. M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    Article  CAS  Google Scholar 

  25. Persons, D. A. et al. Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood 93, 488– 499 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Chen and P. Ma for help with the AFLP analysis; Y. Yan and J. Postlethwait for anchoring our AFLP markers to the zebrafish genetic map; A. Greenleaf and D. Price for providing the plasmid pSLG402; M. Hynes, J. Lin, B. Lu M. Tessier Lavigne, B. Barres and S. Wilson for critically reading the manuscript; D. Anderson for helpful information; and J. Ligos, A Bruce and V. Goodwin for help with graphics. Y.Y. is a JSPS Research Fellow. This work was supported in part by a grant-in-aid for Scientific Research on Priority Areas from the Ministry of Education, Sciences, Sports, and Culture of Japan, and a grant from NEDO to H.H.

Author information

Authors and Affiliations

Authors

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, S., Yamaguchi, Y., Schilbach, S. et al. A regulator of transcriptional elongation controls vertebrate neuronal development. Nature 408, 366–369 (2000). https://doi.org/10.1038/35042590

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35042590

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing