Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A motif in the αβ T-cell receptor controls positive selection by modulating ERK activity

Abstract

Positive selection allows thymocytes that recognize an individual's own major histocompatibility complex (self-MHC) molecules to survive and differentiate, whereas negative selection removes overtly self-reactive thymocytes1. Although both forms of thymic selection are mediated by the αβ T-cell receptor (TCR) and require self-MHC recognition, an important question is whether they are controlled by distinct signalling cascades2. We have shown that mutation of an essential motif within the TCR α-chain-connecting peptide domain (α-CPM) profoundly affects positive but not negative selection3. Using transgenic mice expressing a mutant α-CPM TCR we examined the contribution of several mitogen-activated protein kinase (MAPK) cascades to thymic selection. Here we show that in thymocytes expressing a mutant α-CPM receptor, a positively selecting peptide failed to activate the extracellular signal-regulated kinase (ERK), although other MAPK cascades were induced normally. The defect in ERK activation was associated with impaired recruitment of the activated tyrosine kinases Lck and ZAP-70, phosphorylated forms of the TCR component CD3ζ and the adaptor protein LAT to detergent-insoluble glycolipid-enriched microdomains (DIGs). Therefore, an intact DIG-associated signalosome is essential for sustained ERK activation, which leads to positive selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of thymocytes and peripheral cells from B6.Rag-2-/- wild-type and mutant α-CPM mice.
Figure 2: Analysis of CD4, CD8 and TCR expression in thymocytes from wild-type and mutant B6.β2m-/-, Rag-2-/- mice.
Figure 3: Analysis of thymocyte development induced by SIINFEKL or EIINFEKL in transgenic Rag-2-/-, β2m-/- fetal thymic organ cultures expressing wild-type or mutant TCRs.
Figure 4: Analysis of MAPK activation induced by a negative selection peptide.
Figure 5: Analysis of MAPK activation induced by a positive selection peptide.
Figure 6: Analysis of proximal signalling events.

Similar content being viewed by others

References

  1. von Boehmer, H., Teh, H. S. & Kisielow, P. The thymus selects the useful, neglects the useless and destroys the harmful. Immunol. Today 10, 57–61 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Mariathasan, S., Jones, R. G. & Ohashi, P. S. Signals involved in thymocyte positive and negative selection. Semin. Immunol. 11, 263– 272 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Bäckström, B. T., Müller, U., Hausmann, B. & Palmer, E. Positive selection through a motif in the αβ T cell receptor. Science 281, 835–838 ( 1998).

    Article  ADS  PubMed  Google Scholar 

  4. Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Zijlstra, M. et al. β 2-microglobulin deficient mice lack CD4-8+cytolytic T cells. Nature 344, 742–746 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Hogquist, K. A., Jameson, S. C. & Bevan, M. J. Strong agonist ligands for the T cell receptor do not mediate positive selection of functional CD8+ T cells. Immunity 3, 79–86 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Swat, W., Ignatowicz, L., von Boehmer, H. & Kisielow, P. Clonal deletion of immature CD4+8+thymocytes in suspension culture by extrathymic antigen-presenting cells. Nature 351, 150–153 ( 1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Alberola-Ila, J., Forbush, K. A., Seger, R., Krebs, E. G. & Perlmutter, R. M. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373, 620–623 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Alberola-Ila, J., Hogquist, K. A., Swan, K. A., Bevan, M. J. & Perlmutter, R. M. Positive and negative selection invoke distinct signaling pathways. J. Exp. Med. 184 , 9–18 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Swan, K. A. et al. Involvement of p21ras distinguishes positive and negative selection in thymocytes. EMBO J. 14, 276 –285 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. O'Shea, C. C., Crompton, T., Rosewell, I. R., Hayday, A. C. & Owen, M. J. Raf regulates positive selection. Eur. J. Immunol. 26, 2350– 2355 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Pagès, G. et al. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286, 1374– 1377 (1999).

    Article  PubMed  Google Scholar 

  13. Sugawara, T., Moriguchi, T., Nishida, E. & Takahama, Y. Differential roles of ERK and p38 MAP kinase pathways in positive and negative selection of T lymphocytes. Immunity 9, 565–574 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Yang, D. D. et al. Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity 9, 575 –585 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Sabapathy, K. et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol. 9, 116–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science 282, 2092–2095 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Jacinto, E., Werlen, G. & Karin, M. Cooperation between Syk and Rac1 leads to synergistic JNK activation in T lymphocytes. Immunity 8, 31–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Werlen, G., Jacinto, E., Xia, Y. & Karin, M. Calcineurin preferentially synergizes with PKC-θ to activate JNK and IL-2 promoter in T lymphocytes. EMBO J. 17, 3101–3111 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong, C. et al. JNK is required for effector T-cell function but not for T-cell activation. Nature 405, 91– 94 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Dave, V. P. et al. CD3δ deficiency arrests development of the αβ but not the γδ T cell lineage. EMBO J. 16, 1360–1370 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Montixi, C. et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334–5348 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, W., Trible, R. P. & Samelson, L. E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–246 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Finco, T. S., Kadlecek, T., Zhang, W., Samelson, L. E. & Weiss, A. LAT is required for TCR-mediated activation of PLCγ and the Ras pathway. Immunity 9, 617– 626 (1998).

    CAS  PubMed  Google Scholar 

  25. Marshall, C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. York, R. D. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622– 626 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. & Greenberg, M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Bäckström, B. T. et al. A motif within the T cell receptor α chain constant region connecting peptide domain controls antigen responsiveness. Immunity 5, 437–447 ( 1996).

    Article  PubMed  Google Scholar 

  29. Stotz, S. H., Bolliger, L., Carbone, F. R. & Palmer, E. T cell receptor (TCR) antagonism without a negative signal: evidence from T cell hybridomas expressing two independent TCRs. J. Exp. Med. 189, 253–264 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alexander, J., Payne, J. A., Murray, R., Frelinger, J. A. & Cresswell, P. Differential transport requirements of HLA and H-2 class I glycoproteins. Immunogenetics 29, 380– 388 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Carbone, M. J. Bevan and D. Kioussis for transgenic mice expressing wild-type OT-1 receptors; A. Peter for generating mutant α-CPM TCR constructs; U. Müller for generation of mutant transgenic mice; T. Potter for T2-Kb cells; M. Daniels, K. Hogquist and S. Jameson for tetramers; L. Samelson for LAT antisera; S. Stotz and T. Harder for discussions; and E. Jacinto, T. Baldari, P. Kisielow and J. Kirberg for reading the manuscript. The Basel Institute for Immunology was founded and is supported by F. Hoffmann-LaRoche Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed Palmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werlen, G., Hausmann, B. & Palmer, E. A motif in the αβ T-cell receptor controls positive selection by modulating ERK activity. Nature 406, 422–426 (2000). https://doi.org/10.1038/35019094

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35019094

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing