Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ecosystem size determines food-chain length in lakes

Abstract

Food-chain length is an important characteristic of ecological communities1: it influences community structure2, ecosystem functions1,2,3,4 and contaminant concentrations in top predators5,6. Since Elton7 first noted that food-chain length was variable among natural systems, ecologists have considered many explanatory hypotheses1,4,8,9, but few are supported by empirical evidence4,10,11. Here we test three hypotheses that predict food-chain length to be determined by productivity alone (productivity hypothesis)4,10,12,13, ecosystem size alone (ecosystem-size hypothesis)14,15 or a combination of productivity and ecosystem size (productive-space hypothesis)7,16,17,18. The productivity and productive-space hypotheses propose that food-chain length should increase with increasing resource availability; however, the productivity hypothesis does not include ecosystem size as a determinant of resource availability. The ecosystem-size hypothesis is based on the relationship between ecosystem size and species diversity, habitat availability and habitat heterogeneity14,15. We find that food-chain length increases with ecosystem size, but that the length of the food chain is not related to productivity. Our results support the hypothesis that ecosystem size, and not resource availability, determines food-chain length in these natural ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothesized relationships between food-chain length and ecosystem size, and between food-chain length and productivity.
Figure 2: Relationships between maximum trophic position and ecosystem size or productivity.
Figure 3: The increase in maximum trophic position is caused by both changes in top predator species and increases in the trophic position of each top predator.

Similar content being viewed by others

References

  1. Pimm, S. L. & Lawton, J. H. The number of trophic levels in ecological communities. Nature 275, 542– 544 (1977).

    Article  Google Scholar 

  2. Carpenter, S. R. & Kitchell, J. F. The Trophic Cascade in Lakes (Cambridge Univ. Press, Cambridge, 1993).

    Book  Google Scholar 

  3. DeAngelis, D. L. Dynamics of Nutrient Cycling and Food Webs (Chapman and Hall, London, 1992).

    Book  Google Scholar 

  4. Pimm, S. L. Food Webs (Chapman and Hall, London, 1982).

    Book  Google Scholar 

  5. Cabana, G. & Rasmussen, J. B. Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372, 255–257 ( 1994).

    Article  ADS  CAS  Google Scholar 

  6. Kidd, K. A., Schindler, D. W., Hesslein, R. H. & Muir, D. C. G. Effects of trophic position and lipid on organochlorine concentrations in fishes from subarctic lakes in Yukon Territory. Can. J. Fish. Aquat. Sci. 55, 869–881 ( 1998).

    Article  CAS  Google Scholar 

  7. Elton, C. Animal Ecology (Sidgwick and Jackson, London, 1927).

    Google Scholar 

  8. Hairston, N. G. Jr & Hairston, N. G. Sr Cause–effect relationships in energy flow trophic structure and interspecific interactions. Am. Nat. 142, 379–411 (1993).

    Article  Google Scholar 

  9. Persson, L., Bengtsson, J., Menge, B. A. & Power, M. A. in Food Webs: Integration of Pattern and Process (eds Polis, G. A. & Winemiller, K. O.) 396–434 (Chapman and Hall, New York, 1996).

    Book  Google Scholar 

  10. Briand, F. & Cohen, J. E. Environment correlates of food chain length. Science 238, 956– 960 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Sterner, R. W., Bajpai, A. & Adams, T. The enigma of food chain length: absence of theoretical evidence for dynamic constraints. Ecology 78, 2258–2262 (1997).

    Article  Google Scholar 

  12. Kaunzinger, C. M. K. & Morin, P. J. Productivity controls food-chain properties in microbial communities. Nature 395, 495–497 ( 1998).

    Article  ADS  CAS  Google Scholar 

  13. Oksanen, L., Fretwell, S. D., Arruda, J. & Niemelä, P. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118, 240–261 ( 1981).

    Article  Google Scholar 

  14. Cohen, J. E. & Newman, C. M. Community area and food-chain length: theoretical predictions. Am. Nat. 138, 1542–1554 (1992).

    Article  Google Scholar 

  15. Holt, R. D. in Species Diversity in Ecological Communities (eds Ricklefs, R. E. & Dchluter, D.) 77–88 (Univ. Chicago Press, Chicago, 1993).

    Google Scholar 

  16. Hutchinson, G. E. Homage to Santa Rosalia; or, why are there so many kinds of animals? Am. Nat. 93, 145–159 ( 1959).

    Article  Google Scholar 

  17. Slobodkin, L. B. Growth and Regulation of Animal Populations (Holt, Rinehart and Wilson, New York, 1961).

    Google Scholar 

  18. Schoener, T. W. Food webs from the small to the large. Ecology 70, 1559–1589 (1989).

    Article  Google Scholar 

  19. Schindler, D. W. Factors regulating phytoplankton production and standing crop in the world's lakes. Limnol. Oceanogr. 23, 478– 486 (1978).

    Article  ADS  Google Scholar 

  20. Vander Zanden, M. J., Shuter, B. J., Lester, N. & Rasmussen, J. B. Patterns of food chain length in lakes: a stable isotope study. Am. Nat. 154, 406–416 ( 1999).

    Article  Google Scholar 

  21. Peterson, B. J. & Fry, B. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst. 18, 293–320 (1987).

    Article  Google Scholar 

  22. Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).

    Article  ADS  CAS  Google Scholar 

  23. France, R. L. & Peters, R. H. Ecosystem differences in the trophic enrichment of 13C in aquatic food webs. Can. J. Fish. Aquat. Sci. 54, 1255–1258 (1997).

    Article  Google Scholar 

  24. France, R. L. Differentiation between littoral and pelagic food webs in lakes using carbon isotopes. Limnol. Oceanogr. 40, 1310– 1313 (1995).

    Article  ADS  Google Scholar 

  25. Paine, R. T. Food webs: road maps of interactions or grist for theoretical development? Ecology 69, 1648–1654 (1988).

    Article  Google Scholar 

  26. Jenkins, B., Kitching, R. L. & Pimm, S. L. Productivity, disturbance and food web structure at a local spatial scale in experimental container habitats. Oikos 65, 249–255 ( 1992).

    Article  Google Scholar 

  27. Persson, L., Diehl, S., Johansson, L., Andersson, G. & Hamrin, S. F. Trophic interactions in temperate lake ecosystems: a test of food chain theory. Am. Nat. 140, 59–84 (1992).

    Article  Google Scholar 

  28. del Giorgio, P. A. & France, R. L. Ecosystem-specific patterns in the relationship between zooplankton and POM or microplankton δ13C. Limnol. Oceanogr. 41, 359– 365 (1996).

    Article  ADS  Google Scholar 

  29. Vollenweider, V. R. A. Das Nährstoffbelastungskonzept als grundlage für den externen eingriff in den eutrophierungsprozeß stehender gewässer und talsperren. Z. Wasser-u. Abswasser-Furschung 12, 46 –56 (1979).

    CAS  Google Scholar 

  30. Kling, G. W., Fry, B. & O'Brien, W. J. Stable isotopes and planktonic trophic structure in arctic lakes. Ecology 73, 561– 566 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the New York State Department of Environmental Conservation fisheries biologists and managers, as well as J. Beemer, T. Butler, E. Mills, L. Rudstam, D. Parish, B. Pientka, L. Puth, M. Vogelsang and N. Vochick for their help collecting fish and other samples; K. L. Lovell, J. Burdet and C. Alpha for laboratory and field assistance; and T. E. Dawson, L. O. Hedin, M. H. Olson and L. M. Puth for comments. This research was supported by the Kieckhefer Adirondack Fellowship, the National Science Foundation Research Training Group for Biogeochemistry and Environmental Change at Cornell University and the National Science Foundation Graduate Research Training grant for Human Accelerated Environmental Change at Cornell University and the Institute of Ecosystem Studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Post.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Post, D., Pace, M. & Hairston, N. Ecosystem size determines food-chain length in lakes. Nature 405, 1047–1049 (2000). https://doi.org/10.1038/35016565

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016565

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing