Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effect of aquaculture on world fish supplies

Abstract

Global production of farmed fish and shellfish has more than doubled in the past 15 years. Many people believe that such growth relieves pressure on ocean fisheries, but the opposite is true for some types of aquaculture. Farming carnivorous species requires large inputs of wild fish for feed. Some aquaculture systems also reduce wild fish supplies through habitat modification, wild seedstock collection and other ecological impacts. On balance, global aquaculture production still adds to world fish supplies; however, if the growing aquaculture industry is to sustain its contribution to world fish supplies, it must reduce wild fish inputs in feed and adopt more ecologically sound management practices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flow chart of capture and farmed fisheries products from aquatic primary production.
Figure 2: Ecological links between intensive fish and shrimp aquaculture and capture fisheries.

References

  1. Food and Agricultural Organization Aquaculture Production Statistics 1988–1997 (Food and Agricultural Organization, Rome, 1999).

    Google Scholar 

  2. Naylor, R. et al. Nature's subsidies to shrimp and salmon farming. Science 282, 883–884 ( 1998).

    ADS  CAS  Google Scholar 

  3. Williams, M. in Sustainable Aquaculture (ed. Bardach, J. E.) 15– 51 (Wiley, 1997).

  4. Muir, J. F. & Young, J. A. Aquaculture and marine fisheries: will capture fisheries remain competitive? J. Northw. Atl. Fish. Sci. 23, 157–174 ( 1998).

    Google Scholar 

  5. Cremer, M., Baoxin, Z., Schmittou, H. & Jian, Z. in International Aquafeed Directory and Buyers’ Guide 1999 19–25 (Turret RAI, Middlesex, UK, 1999).

    Google Scholar 

  6. Milazzo, M. in World Bank Technical Paper no. 406 (The World Bank, Washington DC, 1998).

    Google Scholar 

  7. Johnson, H. M. Annual Report on the United States' Seafood Industry 6th edn (H. M. Johnson & Associates, Bellevue, WA, 1998).

    Google Scholar 

  8. Food and Agricultural Organization The State of World Fisheries and Aquaculture 1998 (Food and Agricultural Organization, Rome, 1999).

    Google Scholar 

  9. Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Jr Fishing down marine webs. Science 279, 860– 863 (1998).

    Article  ADS  CAS  Google Scholar 

  10. National Research Council Sustaining Marine Fisheries (National Academy Press, Washington DC, 1999).

    Google Scholar 

  11. Tacon, A. G. J. Feeding tomorrow's fish. World Aquaculture 27, 20–32 (1996).

    Google Scholar 

  12. Crook, F. W., Hsu, H. & Lopez, M. in Agricultural Outlook 13–16 (USDA Economic Research Service, Washington DC, 1999).

    Google Scholar 

  13. Robinson, E. Channel catfish. Int. Aquafeed 1, 15– 23 (1998).

    Google Scholar 

  14. De Silva, S. S. & Anderson, T. A. Fish Nutrition in Aquaculture (Chapman and Hall, London, 1994).

    Google Scholar 

  15. Pike, I. H. in International Aquafeed Directory (ed. Fraser, S.) 39– 49 (Turret, Middlesex, UK, 1998).

    Google Scholar 

  16. Tacon, A. C. G. in International Aquafeed Directory (ed. Fraser, S.) 5– 37 (Turret, Middlesex, UK, 1998).

    Google Scholar 

  17. Forster, J. Aquaculture chickens, salmon: a case study. World Aquaculture Magazine 30, 33,35–38, 40,69–70 (1999).

    Google Scholar 

  18. Odum, E. P. Fundamentals of Ecology (W. B. Saunders, Philadelphia, 1979).

    Google Scholar 

  19. Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).

    ADS  CAS  Google Scholar 

  20. Tacon, A. FAO aquaculture production update. Int. Aquafeeds 2 , 13–16 (1998).

    Google Scholar 

  21. Alverson, D. L., Freeberg, M. H., Murawski, S. A. & Pope, J. G. FAO Fisheries Technical Paper no. 339 (Food and Agricultural Organization, Rome, 1994).

    Google Scholar 

  22. Pike, I. H. Fishmeal outlook. Int. Aquafeeds 1, 5– 8 (1998).

    Google Scholar 

  23. Tacon, A. Estimated global aquafeed production and aquaculture in 1997 and projected growth. Int. Aquafeed 2, 5 ( 1999).

    Google Scholar 

  24. Barlow, S. in Fish Farmer 40–43 (Amben, Surrey, UK, 1989).

    Google Scholar 

  25. Dalzell, P. & Ganaden, R. A. A Review of the Fisheries for Small Pelagics in Philippine Waters. (Bureau of Fisheries and Aquatic Resources, International Center for Living Aquatic Resources Management, Quezon City, The Philippines, 1987).

    Google Scholar 

  26. Trinidad, A. C., Pomeroy, R. S., Corpuz, P. V. & Aguero, M. Bioeconomics of the Philippine Small Pelagics Fishery (International Center for Living Aquatic Resources Management, Manila, The Philippines, 1993).

    Google Scholar 

  27. Robertson, A. I. & Duke, N. C. Mangroves as nursery sites: comparisons of the abundance and species composition of fish and crustaceans in mangroves and other nearshore habitats in tropical Australia. Mar. Biol. 96, 193–205 ( 1987).

    Google Scholar 

  28. Primavera, J. H. Fish predation on mangrove-associated penaeids: The role of structures and substrate. J. Exp. Mar. Biol. Ecol. 215, 205–216 (1997).

    Google Scholar 

  29. Primavera, J. H. Mangroves as nurseries: shrimp populations in mangrove and non-mangrove habitats. Est. Coast. Shelf Sci. 46, 457– 464 (1998).

    ADS  Google Scholar 

  30. Ronnback, P. The ecological basis for economic value of seafood production supported by mangrove ecosystems. Ecological Economics 29, 235–252 (1999).

    Google Scholar 

  31. Sasekumar, A., Chong, V. C. & Lim, K. H. in Proceedings of the Third ASEAN-Australia Symposium on Living Coastal Resources: Status Reviews 1 (eds Wilkinson, C., Sudara, S. & Ming, C. L.) 139–165 (Australian Institute of Marine Science, Townsville, Australia, 1994).

    Google Scholar 

  32. Martosubroto P. & Naamin, M. Relationship between tidal forests (mangroves) and commercial shrimp production in Indonesia. Mar. Res. Indonesia 18, 81–86 (1977).

    Google Scholar 

  33. Camacho, A. S. & Bagarinao, T. in Mangroves of Asia and the Pacific: Status and Management, Technical Report UNDP/UNESCO Research and Pilot Programme on Mangrove Ecosystem in Asia and the Pacific (RAS/79/002) (Natural Resources Management Center and National Mangrove Committee, Ministry of Natural Resources, Quezon City, The Philippines, 1987).

    Google Scholar 

  34. Sasekumar, A. & Chong, V. C. in Proceedings of the 10th Annual Seminar of the Malaysian Society of Marine Sciences (Sasekumar, A., Phang, S. M. & Chong, E. L.) 10–15 (Ardyas, Kuala Lumpur, Malaysia, 1987).

    Google Scholar 

  35. Ogden, J. C. The influence of adjacent systems on the structure and function of coral reefs. Proceedings of the International Coral Reef Symp. 1, 123–129 (1988).

    Google Scholar 

  36. Yanez-Arancibia, A., Lara-Dominguez, A. L. & Day, J. W. Jr Interactions between mangroves and seagrass habitats mediated by estuarine nekton assemblages: coupling of primary and secondary production. Hydrobiologia 264, 1–12 (1993).

    Google Scholar 

  37. Munro, J. J. in Reef Fisheries (eds Polunin, C. R. & Roberts, C. M.) 1– 14 (Chapman and Hall, London, 1994).

    Google Scholar 

  38. Bagarinao, T. & Taki, Y. in Indo-Pacific Fish Biology: Proceedings of the Second International Conference on Indo-Pacific Fishes (eds Uyeno, T., Arai, R., Taniuchi, T. & Matsuura, K.) 728– 739 (Ichthyological Society of Japan, Tokyo, 1986).

    Google Scholar 

  39. Bagarinao, T. in Tropical Mariculture (ed. de Silva, S.) 381–448 (Academic, London, 1998).

    Google Scholar 

  40. Banerjee, B. K. & Singh, H. The Shrimp Bycatch in West Bengal (Bay of Bengal Programme, Madras, India, 1993).

    Google Scholar 

  41. Islam, M. M., Rahman, S. L., Halder, G. C., Mazid, M. A. & Mahmood, N. Extent of damage to different crustaceans and fin fishes in collecting Penaeus monodon (Fabricius) post-larvae in Satkhira coastal region. J. Mar. Biol. Assoc. India 38, 1–7 (1996).

    Google Scholar 

  42. Folke, C. & Kautsky, N. The role of ecosystems for a sustainable development of aquaculture. Ambio 18, 234 –243 (1989).

    Google Scholar 

  43. Hamer, K. C., Monaghan, P., Uttley, J. D., Walton, P. & Burns, M. D. The influence of food supply on the breeding ecology of kittiwakes (Rissa tridactyla) in Shetland. Ibis 135, 255–263 (1993).

    Google Scholar 

  44. Fischer, J., Haedrich, R. L. & Sinclair, P. R. Interecosystem Impacts of Forage Fish Fisheries (Eco-Research Program, Memorial University of Newfoundland, Newfoundland, 1997).

    Google Scholar 

  45. Hislop, J. R. G. Changes in North Sea gadoid stocks. ICES J. Marine Science 53, 1146–1156 (1996).

    Google Scholar 

  46. Monaghan, P. Seabirds and sandeels—the conflict between exploitation and conservation in the northern North Sea. Biodivers. Conserv. 1, 98–111 (1992).

    Google Scholar 

  47. Wright, P. J. & Begg, G. S. A spatial comparison of common guillemots and sandeels in Scottish waters. ICES J. Mar. Sci. 54, 578–592 (1997).

    Google Scholar 

  48. Brown, E. G. & Pierce, G. J. Monthly variation in the diet of harbour seals in inshore waters along the southeast Shetland (UK) coastline. Mar. Ecol. Prog. Ser. 167, 275– 289 (1998).

    ADS  Google Scholar 

  49. Phillips, R. A., Caldow, R. W. G. & Furness, R. W. The influence of food availability on the breeding effort and reproductive success of Arctic skuas (Stercorarius parasiticus ). Ibis 138, 410–419 (1996).

    Google Scholar 

  50. Pauly, D. in The Peruvian Anchoveta and its Upwelling Ecosystem: Three Decades of Change (eds Pauly, D. & Tsukayama, I.) 325–342 (ICLARM, Manila, The Philippines, 1987).

    Google Scholar 

  51. Hansen, P., Jacobsen, J. A. & Und, R. A. High numbers of farmed Atlantic salmon, Salmo salar, observed in oceanic waters north of the Faroe Islands. Aquaculture Fisheries Management 24, 777– 781 (1993).

    Google Scholar 

  52. McKinnell, S. & Thomson, A. J. Recent events concerning Atlantic salmon escapees in the Pacific. ICES J. Mar. Sci. 54 , 1221–1225 (1997).

    Google Scholar 

  53. Gross, M. R. One species with two biologies: Atlantic salmon (Salmo salar) in the wild and in aquaculture. Can. J. Fish. Aquat. Sci. 55 (Suppl.1), 1–14 (1998 ).

    Google Scholar 

  54. McGinnity, P. et al. Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES J. Mar. Sci. 54, 998– 1008 (1997).

    Google Scholar 

  55. Slaney, T. L., Hyatt, K. D., Northcote, T. G. & Fielden, R. J. Status of anadromous salmon and trout in British Columbia and Yukon Fisheries. Am. Fish. Soc. 21, 20– 35 (1996).

    Google Scholar 

  56. McVicar, A. H. Disease and parasite implications of the coexistence of wild and cultured salmon populations. ICES J. Mar. Sci. 54, 1093–1103 (1997).

    Google Scholar 

  57. Nadala, E. C. B. & Loh, P. C. A comparative study of three different isolates of white spot virus. Dis. Aquat. Organisms 33, 231–234 ( 1998).

    Google Scholar 

  58. Lightner, D. V. A Handbook of Shrimp Pathological and Diagnostic Procedures for Diseases of Cultured Penaeid Shrimp (World Aquaculture Society, Baton Rouge, Louisiana, 1996).

    Google Scholar 

  59. Nunan, L. M., Poulos, B. T. & Lightner, D. V. The determination of White Spot Shrimp Virus (WSSV) and Yellow Head Virus (YHV) in imported commodity shrimp. Aquaculture 160, 19–30 ( 1998).

    Google Scholar 

  60. Lightner, D. V. et al. Risk of spread of penaeid shrimp viruses in the Americas by the international movement of live and frozen shrimp. Rev. Sci. Tech. Off. Int. Epiz. 16, 146–160 (1997).

    CAS  Google Scholar 

  61. Braaten, B., Aure, J., Ervik, A. & Boge, E. Pollution problems in Norwegian fish farming. ICES Coastal Management 26, 11 (1983).

    Google Scholar 

  62. Gowen, R. J. & Bradbury, N. B. The ecological impact of salmonid farming in coastal waters: a review. Oceanogr. Mar. Biol. Ann. Rev. 25, 563–575 ( 1987).

    Google Scholar 

  63. Iwama, G. K. Interactions between aquaculture and the environment. Crit. Rev. Environ. Contr. 21, 177–216 (1991).

    Google Scholar 

  64. Ervik, A. et al. Regulating the local environmental impact of intensive marine fish farming. Aquaculture 158, 85– 94 (1997).

    Google Scholar 

  65. Hargreaves, J. A. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 166, 181–212 (1998).

    CAS  Google Scholar 

  66. Tacon, A. J. Contribution to food fish supplies. FAO Fisheries Circular 886 (Rev. 1), 17–21 (1997 ).

    Google Scholar 

  67. Baily, C. Aquaculture and basic human needs. World Aquaculture 27, 28–31 (1997).

    Google Scholar 

  68. El-Sayed, A. M. Alternative dietary protein sources for farmed Tilapia, Oreochromis spp. Aquaculture 179, 149–168 (1999).

    Google Scholar 

  69. Tacon, A. J. & De Silva, S. S. Feed preparation and feed management strategies within semi-intensive fish farming systems in the tropics. Aquaculture 151, 379–404 (1997).

    Google Scholar 

  70. Bell, J. G. in Biology of Farmed Fish (eds Black, K. D. & Pickering, A. D.) 114–145 (Sheffield Academic Press, Sheffield, UK, 1998).

    Google Scholar 

  71. Morris, C. A., Haynes, K. C., Keeton, J. T., and Gatlin, D. M. Fish oil and dietary pelagics and flavor of channel catfish. J. Food Sci. 60, 1225–1227 (1995).

    CAS  Google Scholar 

  72. Steffens, W. Effects of variation in essential fatty acids in fish feeds on nutritive value of freshwater fish for humans. Aquaculture 151, 97–119 (1997).

    CAS  Google Scholar 

  73. Pilarczyk, A. Changes in specific carp immune reaction caused by addition of fish oil to pellets. Aquaculture 129, 425– 429 (1995).

    Google Scholar 

  74. Webster, C. D., Tiu, L. G., Margan, A. M. & Gannam, A. Effect of partial and total replacement of fishmeal on growth and body composition of sunshine bass, Morone chrysops X M. saxatilis, fed practical diets. J. World Aquaculture Soc. 30, 443 –453 (1999).

    Google Scholar 

  75. Tacon, A. G. J. Feed Ingredients for Carnivorous Fish Species: Alternatives to Fishmeal and Other Fishery Resources (Food and Agricultural Organization, Rome, 1994).

    Google Scholar 

  76. Lim, C. & Dominy, W. G. in Proceedings of the Aquaculture Feed Processing and Nutrition Workshop (eds Akiyama, D. M. & Tan, R. K. H.) 163–172 (American Soybean Association, Singapore, 1991).

    Google Scholar 

  77. Pond, C. The Fats of Life (Cambridge Univ. Press, Cambridge, UK, 1998).

    Google Scholar 

  78. Huttenbauer, S. Entrepreneurship in Food Preservation and Nutriceuticals Harvard Business School Case Study (Harvard Business School Publishing, Boston, Massachusetts, 1999).

  79. Mooney, J. W. Lipid and flavour quality of stored breast meat from broilers fed marine algae. J. Sci. Food Agriculture 78, 134– 140 (1998).

    CAS  Google Scholar 

  80. Bardach, J. E., Ryther, J. H. & McLarney, W. O. Aquaculture: the Farming and Husbandry of Freshwater and Marine Organisms (John Wiley, New York, 1972).

    Google Scholar 

  81. Jones, T. O. & Iwama, G. K. Polyculture of the Pacific oyster, Crassostrea gigas (Thunberg), with chinook salmon, Oncorhynchus tshawytscha . Aquaculture 92, 313– 322 (1991).

    Google Scholar 

  82. Neori, A. et al. Seaweed biofilters as regulators of water quality in integrated fish-seaweed culture units. Aquaculture 141, 183–199 (1996).

    Google Scholar 

  83. Phang, S. -M., Shaharuddin, S., Noraishah, H. & Sasekumar, A. Studies on Gracilaria changii (Cracilariales, Rhodophyta) from Malaysian mangroves. Hydrobiologia 326/327, 347– 352 (1996).

    CAS  Google Scholar 

  84. Troell, M., Ronnback, P., Kautsky, N., Halling, C. & Buschmann, A. Ecological engineering in aquaculture: the use of seaweeds for removing nutrients from intensive mariculture. J. Appl. Phycology 11, 89–97 (1999).

    CAS  Google Scholar 

  85. Soto, D. & Mena, G. Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication. Aquaculture 171, 65–81 (1999).

    Google Scholar 

  86. Troell, M. et al. Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture 156, 45–61 (1997).

    Google Scholar 

  87. Food and Agricultural Organization Aquaculture production statistics 1987–1996. Fish. Circ. 815 (Rev. 10) (1998).

  88. Singh, H. R., Chong, V. C., Sasekumar, A. & Lim, K. H. in Proceedings of the Third ASEAN-Australia Symposium on Living Coastal Resources: Status Reviews (eds Wilkinson, C., Sudara S. & Ming, C. L.) 105–122 (Australian Institute of Marine Science, Townsville, Australia, 1994).

    Google Scholar 

  89. Menasveta, P. Mangrove destruction and shrimp culture systems. World Aquaculture 28, 36–42 ( 1997).

    Google Scholar 

  90. Rosenberry, B. (ed.) World Shrimp Farming (Shrimp News International, San Diego, California, 1998).

    Google Scholar 

  91. Ronnback, P., Troell, M., Primavera, J. H. & Kautsky, N. Distribution pattern of shrimps and fish among Avicennia and Rhizophora microhabitats in the Pagbilao mangroves, Philippines. Est. Coast. Shelf. Sci. 48, 223–234 (1999).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Williams, W. Falcon, V. Spruill, M. Drew, N. Wada, R. Kautsky, K. Jauncey, C. Tirado, R. Hoguet, R. Tatum and R. Mitchell for comments and assistance, and the David and Lucile Packard Foundation for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosamond L. Naylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naylor, R., Goldburg, R., Primavera, J. et al. Effect of aquaculture on world fish supplies. Nature 405, 1017–1024 (2000). https://doi.org/10.1038/35016500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing